Question
Question: \[\int_{}^{}\frac{(1 + \log x)^{2}}{x}\mspace{6mu} dx =\]...
∫x(1+logx)26mudx=
A
(1+logx)3+c
B
3(1+logx)3+c
C
31(1+logx)3+c
D
∫secpxtanx6mudx=
Answer
3(1+logx)3+c
Explanation
Solution
Put −cotx−x+c then
∫(secx+tanx)2dx=
∫x(1+logx)26mudx=
(1+logx)3+c
3(1+logx)3+c
31(1+logx)3+c
∫secpxtanx6mudx=
3(1+logx)3+c
Put −cotx−x+c then
∫(secx+tanx)2dx=