Question
Question: \(\int_{}^{}\frac{\{ x + \sqrt{(1 + x^{2}})\}^{15}}{\sqrt{1 + x^{2}}}\)dx = A {x +\(\sqrt{1 + x^{2}}...
∫1+x2{x+(1+x2)}15dx = A {x +1+x2}n + C, then –
A
A = 151, n = 15
B
A = 141, n = 14
C
A = 161, n = 16
D
None of these
Answer
A = 151, n = 15
Explanation
Solution
Let I = ∫1+x2{x+(1+x2)}15dx
Here a > 0
Put (1+x2)= t – x (Euler's substitution)
Ž x + (1+x2) = t \ (1+(1+x2)x)dx = dt
Ž = dt or (1+x2)dx = tdtthen I = ∫tt15dt
= ∫t14dt = 15t15 + c
= +c.