Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\{ x + \sqrt{(1 + x^{2}})\}^{15}}{\sqrt{1 + x^{2}}}\)dx = A {x +\(\sqrt{1 + x^{2}}...

{x+(1+x2)}151+x2\int_{}^{}\frac{\{ x + \sqrt{(1 + x^{2}})\}^{15}}{\sqrt{1 + x^{2}}}dx = A {x +1+x2\sqrt{1 + x^{2}}}n + C, then –

A

A = 115\frac{1}{15}, n = 15

B

A = 114\frac{1}{14}, n = 14

C

A = 116\frac{1}{16}, n = 16

D

None of these

Answer

A = 115\frac{1}{15}, n = 15

Explanation

Solution

Let I = {x+(1+x2)}151+x2\int_{}^{}\frac{\{ x + \sqrt{(1 + x^{2}})\}^{15}}{\sqrt{1 + x^{2}}}dx

Here a > 0

Put (1+x2)\sqrt{(1 + x^{2})}= t – x (Euler's substitution)

Ž x + (1+x2)\sqrt{(1 + x^{2})} = t \ (1+x(1+x2))\left( 1 + \frac{x}{\sqrt{(1 + x^{2})}} \right)dx = dt

Ž = dt or dx(1+x2)\frac{dx}{\sqrt{(1 + x^{2})}} = dtt\frac{dt}{t}then I = t15dtt\int_{}^{}\frac{t^{15}dt}{t}

= t14dt\int \mathrm { t } ^ { 14 } \mathrm { dt } = t1515\frac{t^{15}}{15} + c

= +c.