Solveeit Logo

Question

Question: \(\int_{}^{}\frac{\{ f(x).\varphi'(x)–f'(x)\varphi(x)\}}{f(x).\varphi(x)}\){logf(x)–logf(x)}dx =...

{f(x).φ(x)f(x)φ(x)}f(x).φ(x)\int_{}^{}\frac{\{ f(x).\varphi'(x)–f'(x)\varphi(x)\}}{f(x).\varphi(x)}{logf(x)–logf(x)}dx =

A

logφ(x)f(x)\frac{\varphi(x)}{f(x)} + K

B

12\frac { 1 } { 2 } {logφ(x)f(x)}2\left\{ \log\frac{\varphi(x)}{f(x)} \right\}^{2}+ K

C

φ(x)f(x)\frac{\varphi(x)}{f(x)}.logφ(x)f(x)\frac{\varphi(x)}{f(x)}+K

D

None of these

Answer

\frac { 1 } { 2 }$$\left\{ \log\frac{\varphi(x)}{f(x)} \right\}^{2}+ K

Explanation

Solution

Sol. I = 12πfC\frac{1}{2\pi fC}d{logφ(x)f(x)}\left\{ \log\frac{\varphi(x)}{f(x)} \right\}

= 12\frac{1}{2} {logφ(x)f(x)}2\left\{ \log\frac{\varphi(x)}{f(x)} \right\}^{2} + K