Question
Question: \(\int_{}^{}{((e/x)^{x} + (x/e)^{x})\mathcal{l}nxdx}\) =...
∫((e/x)x+(x/e)x)lnxdx =
A
(x/e)x – (e/x)x + c
B
(x/e)x + (e/x)x + c
C
(e/x)x – (x/e)x + c
D
(x/e)x + 2 (e/x)x + c
Answer
(x/e)x – (e/x)x + c
Explanation
Solution
Let (ex)x = t
((ex)xlnex+x⋅(ex)x−1⋅e1)dx = dt
= dt ̃ (ex)xlnxdx =dt
So I = ∫(t21+1)dt = −t1+ t + C
= (ex)x−(xe)x+C