Solveeit Logo

Question

Question: \(\int_{}^{}{((e/x)^{x} + (x/e)^{x})\mathcal{l}nxdx}\) =...

((e/x)x+(x/e)x)lnxdx\int_{}^{}{((e/x)^{x} + (x/e)^{x})\mathcal{l}nxdx} =

A

(x/e)x – (e/x)x + c

B

(x/e)x + (e/x)x + c

C

(e/x)x – (x/e)x + c

D

(x/e)x + 2 (e/x)x + c

Answer

(x/e)x – (e/x)x + c

Explanation

Solution

Let (xe)x\left( \frac{x}{e} \right)^{x} = t

((xe)xlnxe+x(xe)x11e)dx\left( \left( \frac { \mathrm { x } } { \mathrm { e } } \right) ^ { \mathrm { x } } \ln \frac { \mathrm { x } } { \mathrm { e } } + \mathrm { x } \cdot \left( \frac { \mathrm { x } } { \mathrm { e } } \right) ^ { \mathrm { x } - 1 } \cdot \frac { 1 } { \mathrm { e } } \right) \mathrm { dx } = dt

= dt ̃ (xe)xlnxdx\left( \frac{x}{e} \right)^{x}\mathcal{l}nxdx =dt

So I = (1t2+1)dt\int_{}^{}{\left( \frac{1}{t^{2}} + 1 \right)dt} = 1t- \frac{1}{t}+ t + C

= (xe)x(ex)x+C\left( \frac { x } { e } \right) ^ { x } - \left( \frac { e } { x } \right) ^ { x } + C