Solveeit Logo

Question

Question: \[\int_{}^{}{e^{x}(\log x + (1/x^{2}}))dx =\]...

ex(logx+(1/x2))dx=\int_{}^{}{e^{x}(\log x + (1/x^{2}}))dx =

A

ex log x + c

B

ex (log x – 1/x) + c

C

ex(log x + 1/x) + c

D

(ex /x2) + c

Answer

ex (log x – 1/x) + c

Explanation

Solution

= + 1x2\int_{}^{}\frac{1}{x^{2}}ex dx

= log x . ex + 1x2exdx\int_{}^{}{\frac{1}{x^{2}}e^{x}dx}

= log x ex(1xex+1x2exdx)\left( \frac{1}{x}e^{x} + \int_{}^{}{\frac{1}{x^{2}}e^{x}dx} \right) + 1x2exdx\int_{}^{}{\frac{1}{x^{2}}e^{x}dx}

= log x ex1x\frac{1}{x} ex + c