Solveeit Logo

Question

Question: \(\int_{}^{}e^{x}\left( \tan^{- 1}x + \frac{2x}{(1 + x^{2})^{2}} \right)\).dx is equal to...

ex(tan1x+2x(1+x2)2)\int_{}^{}e^{x}\left( \tan^{- 1}x + \frac{2x}{(1 + x^{2})^{2}} \right).dx is equal to

A

ex(cot1x11+x2)\left( \cot^{- 1}x - \frac{1}{1 + x^{2}} \right) + c

B

ex(tan1x+11+x2)\left( \tan^{- 1}x + \frac{1}{1 + x^{2}} \right) + c

C

ex(tan1x11+x2)\left( \tan^{- 1}x - \frac{1}{1 + x^{2}} \right) + c

D

ex tan–1 x + c

Answer

ex(tan1x11+x2)\left( \tan^{- 1}x - \frac{1}{1 + x^{2}} \right) + c

Explanation

Solution

(tan1x+2x(1+x2)2)\left( \tan^{- 1}x + \frac{2x}{(1 + x^{2})^{2}} \right)dx

= (tan1x+11+x2)\left( \tan^{- 1}x + \frac{1}{1 + x^{2}} \right) $$\downarrow \downarrow f(x)f(x)f(x)f'(x) dx –

(11+x22x(1+x2)2)\left( \frac{1}{1 + x^{2}} - \frac{2x}{(1 + x^{2})^{2}} \right) $${\downarrow \downarrow }{g(x)g'(x)}

= ex tan–1(x) – ex 11+x2\frac{1}{1 + x^{2}} + c

= ex (tan1x11+x2)\left( \tan^{- 1}x - \frac{1}{1 + x^{2}} \right) + c