Solveeit Logo

Question

Question: \(\int_{}^{}{e^{x}\left( \frac{1 - x}{1 + x^{2}} \right)^{2}}\)dx =...

ex(1x1+x2)2\int_{}^{}{e^{x}\left( \frac{1 - x}{1 + x^{2}} \right)^{2}}dx =

A

ex(1+x2)2\frac{e^{x}}{(1 + x^{2})^{2}}+ c

B

ex1+x2- \frac{e^{x}}{1 + x^{2}} + c

C

ex1+x2\frac{e^{x}}{1 + x^{2}} + c

D

None of these

Answer

ex1+x2\frac{e^{x}}{1 + x^{2}} + c

Explanation

Solution

ex(1+x22x(1+x2)2)dx\int_{}^{}{e^{x}\left( \frac{1 + x^{2} - 2x}{(1 + x^{2})^{2}} \right)dx}= I1=t1/2dt=t3/23/2+c1I _ { 1 } = \int t ^ { 1 / 2 } d t = \frac { t ^ { 3 / 2 } } { 3 / 2 } + c _ { 1 }

= ex . 11+x2+c\frac{1}{1 + x^{2}} + c