Solveeit Logo

Question

Question: \(\int_{}^{}{e^{x}\left( \frac{1 - \sin x}{1 - \cos x} \right)}\)dx is equal to –...

ex(1sinx1cosx)\int_{}^{}{e^{x}\left( \frac{1 - \sin x}{1 - \cos x} \right)}dx is equal to –

A

–ex tan (x2)\left( \frac{x}{2} \right) + c

B

–ex cot (x2)\left( \frac{x}{2} \right) + c

C

12\frac{1}{2} ex tan (x2)\left( \frac{x}{2} \right) + c

D

12\frac{1}{2} ex cot (x2)\left( \frac{x}{2} \right) + c

Answer

–ex cot (x2)\left( \frac{x}{2} \right) + c

Explanation

Solution

LetI = (1sinx1cosx)\left( \frac{1 - \sin x}{1 - \cos x} \right) dx =ex(1sinx2sin2x/2)\int_{}^{}{e^{x}\left( \frac{1 - \sin x}{2\sin^{2}x/2} \right)}dx

ŽI =(12cosec2x2cotx2)\left( \frac{1}{2}\cos ec^{2}\frac{x}{2} - \cot\frac{x}{2} \right)dx

= 12\frac { 1 } { 2 } ex\int_{}^{}e^{x}cosec2x2\frac{x}{2}dx –ex\int_{}^{}e^{x}cot x2\frac{x}{2}dx

= 12\frac { 1 } { 2 } ex\int_{}^{}e^{x}cosec2x2\frac{x}{2} dx – ex cot x2\frac{x}{2}12\frac { 1 } { 2 } ex\int_{}^{}e^{x}cosec2 x2\frac{x}{2}dx

\ I = ex (cotx2)\left( - \cot\frac{x}{2} \right)+ c

= – ex cot x2+c\frac{x}{2} + c