Question
Question: \(\int_{}^{}e^{x}\{ f(x)–f'(x)\}\) dx = f(x) then\(\int_{}^{}{e^{x}.f(x)}\)dx =...
∫ex{f(x)–f′(x)} dx = f(x) then∫ex.f(x)dx =
A
f(x) + ex .f(x)
B
f(x) – ex . f(x)
C
21{f(x) + exf(x)}
D
21{f(x) + ex f '(x)}
Answer
21{f(x) + exf(x)}
Explanation
Solution
Here ∫ex (f(x) – f '(x)) dx = f(x)
& (f(x) – f '(x)) dx = ex.f(x)
Add ̃ 2 ∫.ex. f(x)dx = f(x) + ex f(x)