Solveeit Logo

Question

Question: \(\int_{}^{}e^{\tan^{- 1}x}\) (1 + x + x<sup>2</sup>)d(cot<sup>–1</sup> x) is equal to-...

etan1x\int_{}^{}e^{\tan^{- 1}x} (1 + x + x2)d(cot–1 x) is equal to-

A

etan1x+C- e^{\tan^{- 1}x} + C

B

etan1x+Ce^{\tan^{- 1}x} + C

C

xetan1x+C- xe^{\tan^{- 1}x} + C

D

x etan1x+Ce^{\tan^{- 1}x} + C

Answer

xetan1x+C- xe^{\tan^{- 1}x} + C

Explanation

Solution

I = –

Let tan–1x = t

So I = –et(1+tant+tan2t)dt\int \mathrm { e } ^ { \mathrm { t } } \left( 1 + \tan \mathrm { t } + \tan ^ { 2 } \mathrm { t } \right) \mathrm { dt } = –

= – et . tan t + C = – x