Solveeit Logo

Question

Question: \(\int_{}^{}\cot^{- 1}\) (1 – x + x<sup>2</sup>) dx = x tan<sup>–1</sup> x – \(\frac{1}{2}\)log (1 +...

cot1\int_{}^{}\cot^{- 1} (1 – x + x2) dx = x tan–1 x – 12\frac{1}{2}log (1 + x2) + A, Then A is equal to –

A

– (1 – x) tan–1 (1 – x2) + 12\frac{1}{2} log {1 + (1 – x)2} + c

B

(1 – x) tan–1 (1 – x2) + 12\frac{1}{2} log {1 + (1 – x)2} + c

C

– (1 – x) tan–1 (1 – x) + 12\frac{1}{2} log {1 + (1 – x)2} + c

D

None of these

Answer

– (1 – x) tan–1 (1 – x) + 12\frac{1}{2} log {1 + (1 – x)2} + c

Explanation

Solution

We have, cot1\int_{}^{}\cot^{- 1} (1 – x + x2) dx

= cot1\int \cot ^ { - 1 }{1 – x (1 – x)} dx

= tan1\int \tan ^ { - 1 } {11x(1x)}\left\{ \frac{1}{1 - x(1 - x)} \right\}dx

= tan1\int \tan ^ { - 1 } {x+(1x)1x(1x)}\left\{ \frac{x + (1 - x)}{1 - x(1 - x)} \right\}dx

= {tan1\int \left\{ \tan ^ { - 1 } \right. x + tan–1 (1 – x)} dx

= tan1\int \tan ^ { - 1 }x dx + tan1\int_{}^{}\tan^{- 1} (1 – x)dx

= I1 + I2 … (1)

where I1 =tan1\int_{}^{}\tan^{- 1}x dx and I2 = tan1\int_{}^{}\tan^{- 1} (1 – x) dx.

Now, I1 = tan1\int_{}^{}\tan^{- 1}x dx= tan1\int_{}^{}\tan^{- 1}x 1 dx

I II

= x tan–1 x –x1+x2\int_{}^{}\frac{x}{1 + x^{2}}dx

= x tan–1 x – 12\frac { 1 } { 2 } 11+x2\int_{}^{}\frac{1}{1 + x^{2}}d (1 + x2)

= x tan–1 x –12\frac{1}{2}log (1 + x2)… (2) and

I2 = tan1\int_{}^{}\tan^{- 1} (1 – x) dx= –tan1\int_{}^{}\tan^{- 1} (1 – x) d (1 – x)

= – [(1x)tan1(1x)12log{1+(1x)2}]\left\lbrack (1 - x)\tan^{- 1}(1 - x) - \frac{1}{2}\log\{ 1 + (1 - x)^{2}\} \right\rbrack

[using (2)]

Substituting the values of I1 and I2 in (1), we get

cot1\int_{}^{}\cot^{- 1} (1 – x + x2) dx = x tan–1 x – 12\frac{1}{2} log (1 + x2)

– (1 – x) tan–1 (1 – x) + 12\frac{1}{2} log {1 + (1 – x)2} + c

Hence (3) is the correct answer.