Question
Question: \(\int_{a}^{b}\frac{|x|}{x}\)dx equals:...
∫abx∣x∣dx equals:
A
|a| – |b|
B
|b| – |a|
C
||a| – |b||
D
|b – a|
Answer
|b| – |a|
Explanation
Solution
Sol. Case -1
If a < b < 0, ∫abx∣x∣dx = – ∫abdx
= – (b –a) = |b| – |a|
(Q a < b < 0; |b| = – b and |a| = –a)
Case- 2
If a < 0 < b, ∫abx∣x∣dx= –∫a0dx+ ∫0bdx
= a + b = |b| – |a| (Q a < 0, |a| = –a)
Case- 3
Sol. If 0 < a < b, ∫abx∣x∣dx
= ∫abdx= b – a = |b| –|a|