Solveeit Logo

Question

Question: \[\int_{8}^{15}{\frac{dx}{(x - 3)\sqrt{x + 1}} =}\]...

815dx(x3)x+1=\int_{8}^{15}{\frac{dx}{(x - 3)\sqrt{x + 1}} =}

A

12log53\frac{1}{2}\log\frac{5}{3}

B

13log53\frac{1}{3}\log\frac{5}{3}

C

12log35\frac{1}{2}\log\frac{3}{5}

D

15log35\frac{1}{5}\log\frac{3}{5}

Answer

12log53\frac{1}{2}\log\frac{5}{3}

Explanation

Solution

I=815dx(x3)x+1I = \int_{8}^{15}\frac{dx}{(x - 3)\sqrt{x + 1}}

Put x=tan2θθ=tan1xx = \tan^{2}\theta \Rightarrow \theta = \tan^{- 1}\sqrt{x}

dx=2tanθsec2θdθdx = 2\tan\theta\sec^{2}\theta d\theta

I=tan18tan1152tanθsec2θ(tan2θ3)tan2θ+1dθ\therefore I = \int_{\tan^{- 1}\sqrt{8}}^{\tan^{- 1}\sqrt{15}}{\frac{2\tan\theta\sec^{2}\theta}{(\tan^{2}\theta - 3)\sqrt{\tan^{2}\theta + 1}}d\theta}

=tan18tan1152tanθsec2θ(sec2θ4)secθdθ= \int_{\tan^{- 1}\sqrt{8}}^{\tan^{- 1}\sqrt{15}}{\frac{2\tan\theta\sec^{2}\theta}{(\sec^{2}\theta - 4)\sec\theta}d\theta}

=tan18tan1152tanθsecθ(sec2θ4)dθ= \int_{\tan^{- 1}\sqrt{8}}^{\tan^{- 1}\sqrt{15}}{\frac{2\tan\theta\sec\theta}{(\sec^{2}\theta - 4)}d\theta}

=tan18tan1152tanθsecθ(secθ2)(secθ+2)dθ= \int_{\tan^{- 1}\sqrt{8}}^{\tan^{- 1}\sqrt{15}}{\frac{2\tan\theta\sec\theta}{(\sec\theta - 2)(\sec\theta + 2)}d\theta}

=[12log(secθ2)(secθ+2)]tan18tan115= \left\lbrack \frac{1}{2}\log\frac{(\sec\theta - 2)}{(\sec\theta + 2)} \right\rbrack_{\tan^{- 1}\sqrt{8}}^{\tan^{- 1}\sqrt{15}}

=12[log26log15]=12log53= \frac{1}{2}\left\lbrack \log\frac{2}{6} - \log\frac{1}{5} \right\rbrack = \frac{1}{2}\log\frac{5}{3}.