Solveeit Logo

Question

Question: \(\int_{}^{}7^{7^{7^{x}}}\). \(7^{7^{x}}\) . 7<sup>x</sup> dx is equal to –...

777x\int_{}^{}7^{7^{7^{x}}}. 77x7^{7^{x}} . 7x dx is equal to –

A

777x(loge7)3\frac{7^{7^{7^{x}}}}{(\log_{e}7)^{3}}+ c

B

777x(loge7)3+7\frac{7^{7^{7^{x}}}}{(\log_{e}7)^{3}} + 7+ c

C

777x7^{7^{7^{x}}}. (loge 7)3 + c

D

None of these

Answer

777x(loge7)3\frac{7^{7^{7^{x}}}}{(\log_{e}7)^{3}}+ c

Explanation

Solution

We have, 777x\int_{}^{}7^{7^{7^{x}}}. 77x7^{7^{x}} . 7x dx

= 1(loge7)3\frac { 1 } { \left( \log _ { e } 7 \right) ^ { 3 } } (777xloge7)\int_{}^{}\left( 7^{7^{7^{x}}}\log_{e}7 \right) . (77xloge7)\left( 7^{7^{x}}\log_{e}7 \right)

(7xloge7)\left( 7 ^ { x } \log _ { e } 7 \right) dx

= 1(loge7)3\frac { 1 } { \left( \log _ { e } 7 \right) ^ { 3 } } 1\int_{}^{}1. d(77x7^{7^{x}}) = 777x(loge7)3\frac{7^{7^{7^{x}}}}{(\log_{e}7)^{3}}+ c.

Hence (1) is the correct answer.