Solveeit Logo

Question

Question: \(\int_{}^{}{(3\text{cose}\text{c}^{2}x + 2\sin 3x)\mspace{6mu} dx =}\) is equal to....

(3cosec2x+2sin3x)6mudx=\int_{}^{}{(3\text{cose}\text{c}^{2}x + 2\sin 3x)\mspace{6mu} dx =} is equal to.

A

(3cotx+23cos3x)+c- \left( 3\cot x + \frac{2}{3}\cos 3x \right) + c

B

3cotx23cos3x+c3\cot x - \frac{2}{3}\cos 3x + c

C

f(x)=1x+xf'(x) = \frac{1}{x} + x

D

f(1)=52f(1) = \frac{5}{2}

Answer

(3cotx+23cos3x)+c- \left( 3\cot x + \frac{2}{3}\cos 3x \right) + c

Explanation

Solution

x2=tx^{2} = t.