Question
Question: \[\int_{}^{}{(2x + 3)\sqrt{x^{2} + 4x + 3}}dx =\]...
∫(2x+3)x2+4x+3dx=
A
log∣(x+2)+(x2+4x+3)∣+c
B
log∣(x+2)+(x2+4x+3)∣+c
C
log∣(x−2)+(x2+4x+3)∣+c
D
None of these
Answer
None of these
Explanation
Solution
Let 2x+3=Mdxd(x2+4x+3)+N
⇒ 2x+3=M(2x+4)+N
Equating the coefficients of x and constant terms on both sides, we get
2=2M⇒M=1 and 3=4M+N⇒N=3−4×1=−1∴2x+3=(2x+4)−1
Hence,I=∫[(2x+4)−1]x2+4x+3dx =∫(2x+4)x2+4x+3dx−∫x2+4x+3dx =I1−I2,(say)
Now, I1=∫(2x+4)x2+4x+3dx
Putting x2+4x+3=t⇒(2x+4)dx=dt, we have
I1=∫t1/2dt=3/2t3/2+c1 =32(x2+4x+3)3/2+c1
I2=∫x2+4x+3dx=∫(x+2)2−12dx
=21(x+2)(x+2)2−12−21.12logx+2+(x+2)2−12+c2=21(x+2)x2+4x+3−21logx+2+x2+4x+3+c2
∴I=I1−I2
=32(x2+4x+3)3/2−[21(x+2)x2+4x+3 −21log x+2+x2+4x+3]+c, (where, c=c1−c2),