Solveeit Logo

Question

Question: \[\int_{}^{}{(2x + 3)\sqrt{x^{2} + 4x + 3}}dx =\]...

(2x+3)x2+4x+3dx=\int_{}^{}{(2x + 3)\sqrt{x^{2} + 4x + 3}}dx =

A

log(x+2)+(x2+4x+3)+c\log|(x + 2) + (\sqrt{x^{2} + 4x + 3)}| + c

B

log(x+2)+(x2+4x+3)+c\log|(x + 2) + (\sqrt{x^{2} + 4x + 3)}| + c

C

log(x2)+(x2+4x+3)+c\log|(x - 2) + (\sqrt{x^{2} + 4x + 3)}| + c

D

None of these

Answer

None of these

Explanation

Solution

Let 2x+3=Mddx(x2+4x+3)+N2x + 3 = M\frac{d}{dx}(x^{2} + 4x + 3) + N

\Rightarrow 2x+3=M(2x+4)+N2x + 3 = M(2x + 4) + N

Equating the coefficients of x and constant terms on both sides, we get

2=2MM=12 = 2M \Rightarrow M = 1 and 3=4M+NN=34×1=12x+3=(2x+4)13 = 4M + N \Rightarrow N = 3 - 4 \times 1 = - 1\therefore 2x + 3 = (2x + 4) - 1

Hence,I=[(2x+4)1]x2+4x+3dxI = \int_{}^{}{\lbrack(2x + 4) - 1\rbrack}\sqrt{x^{2} + 4x + 3dx} =(2x+4)x2+4x+3dxx2+4x+3dx= \int_{}^{}{(2x + 4)\sqrt{x^{2} + 4x + 3}}dx - \int_{}^{}\sqrt{x^{2} + 4x + 3}dx =I1I2,(say)= I_{1} - I_{2},(say)

Now, I1=(2x+4)x2+4x+3dxI_{1} = \int_{}^{}{(2x + 4)\sqrt{x^{2} + 4x + 3}dx}

Putting x2+4x+3=t(2x+4)dx=dt,x^{2} + 4x + 3 = t \Rightarrow (2x + 4)dx = dt, we have

I1=t1/2dt=t3/23/2+c1I_{1} = \int_{}^{}t^{1/2}dt = \frac{t^{3/2}}{3/2} + c_{1} =23(x2+4x+3)3/2+c1= \frac{2}{3}(x^{2} + 4x + 3)^{3/2} + c_{1}

I2=x2+4x+3dx=(x+2)212dxI_{2} = \int_{}^{}\sqrt{x^{2} + 4x + 3}dx = \int_{}^{}\sqrt{(x + 2)^{2} - 1^{2}}dx

=12(x+2)(x+2)21212.12logx+2+(x+2)212+c2=12(x+2)x2+4x+312logx+2+x2+4x+3+c2= \frac{1}{2}(x + 2)\sqrt{(x + 2)^{2} - 1^{2}} - \frac{1}{2}.1^{2}\log\left| x + 2 + \sqrt{(x + 2)^{2} - 1^{2}} \right| + c_{2} = \frac{1}{2}(x + 2)\sqrt{x^{2} + 4x + 3} - \frac{1}{2}\log\left| x + 2 + \sqrt{x^{2} + 4x + 3} \right| + c_{2}

I=I1I2\therefore I = I_{1} - I_{2}

=23(x2+4x+3)3/2[12(x+2)x2+4x+3 12log x+2+x2+4x+3]+c,= \frac{2}{3}(x^{2} + 4x + 3)^{3/2} - \left\lbrack \frac{1}{2}(x + 2)\sqrt{x^{2} + 4x + 3} \right.\ - \frac{1}{2}\log\left. \ \left| x + 2 + \sqrt{x^{2} + 4x + 3} \right| \right\rbrack + c, (where, c=c1c2),c = c_{1} - c_{2}),