Solveeit Logo

Question

Question: \[\int_{}^{}{(2x - 5)\sqrt{x^{2} - 4x + 3}}dx =\]...

(2x5)x24x+3dx=\int_{}^{}{(2x - 5)\sqrt{x^{2} - 4x + 3}}dx =

A

logx2+x24x+3+c\log|x - 2 + \sqrt{x^{2} - 4x + 3}| + c

B

logx2x24x+3+c\log|x - 2 - \sqrt{x^{2} - 4x + 3}| + c

C

logx+2+x24x+3+c\log|x + 2 + \sqrt{x^{2} - 4x + 3}| + c

D

None of these

Answer

None of these

Explanation

Solution

Let 2x5=Mddx(x24x+3)+N2x5=M(2x4)+N2x - 5 = M\frac{d}{dx}(x^{2} - 4x + 3) + N \Rightarrow 2x - 5 = M(2x - 4) + N

Equating the coefficients of x and constant terms on both sides, we get

2=2MM=12 = 2M \Rightarrow M = 1

5=4M+N- 5 = - 4M + N N=4M5=1\Rightarrow N = 4M - 5 = - 1

Hence, I={(2x4)1}x24x+3dxI = \int_{}^{}\left\{ (2x - 4) - 1 \right\}\sqrt{x^{2} - 4x + 3}dx

I=(2x4)x24x+3dxx24x+3dx\Rightarrow I = \int_{}^{}{(2x - 4)\sqrt{x^{2} - 4x + 3}}dx - \int_{}^{}\sqrt{x^{2} - 4x + 3}dx I=I1I2(say)I = I_{1} - I_{2}(say)

I1=(2x4)x24x+3dxI_{1} = \int_{}^{}{(2x - 4)\sqrt{x^{2} - 4x + 3}}dx =23(x24x+3)3/2+c1= \frac{2}{3}(x^{2} - 4x + 3)^{3/2} + c_{1}

I2=x24x+3dx=x24x+44+3dxI_{2} = \int_{}^{}\sqrt{x^{2} - 4x + 3}dx = \int_{}^{}{\sqrt{x^{2} - 4x + 4 - 4 + 3}dx}

=(x2)212= \int_{}^{}\sqrt{(x - 2)^{2} - 1^{2}} \Rightarrow I2=12(x2)x24x+312.12log{(x2)+x24x+3}I_{2} = \frac{1}{2}(x - 2)\sqrt{x^{2} - 4x + 3}\frac{- 1}{2}.1^{2}\log\left\{ (x - 2) + \sqrt{x^{2} - 4x + 3} \right\} =12(x2)x24x+3= \frac{1}{2}(x - 2)\sqrt{x^{2} - 4x + 3} 12log[(x2)+x24x+3]+c2\frac{- 1}{2}\log\left\lbrack (x - 2) + \sqrt{x^{2} - 4x + 3} \right\rbrack + c_{2}, Therefore I=I1I2I = I_{1} - I_{2}

I=23(x24x+3)3/2+12(2)x24x+312log[(x2)+x24x+3]+cI = \frac{2}{3}(x^{2} - 4x + 3)^{3/2} + \frac{1}{2}( - 2)\sqrt{x^{2} - 4x + 3} - \frac{1}{2}\log\left\lbrack (x - 2) + \sqrt{x^{2} - 4x + 3} \right\rbrack + c (Where c=c1+c2)(\text{Where }c = c_{1} + c_{2})