Question
Question: \[\int_{}^{}{(2x - 5)\sqrt{x^{2} - 4x + 3}}dx =\]...
∫(2x−5)x2−4x+3dx=
A
log∣x−2+x2−4x+3∣+c
B
log∣x−2−x2−4x+3∣+c
C
log∣x+2+x2−4x+3∣+c
D
None of these
Answer
None of these
Explanation
Solution
Let 2x−5=Mdxd(x2−4x+3)+N⇒2x−5=M(2x−4)+N
Equating the coefficients of x and constant terms on both sides, we get
2=2M⇒M=1
−5=−4M+N ⇒N=4M−5=−1
Hence, I=∫{(2x−4)−1}x2−4x+3dx
⇒I=∫(2x−4)x2−4x+3dx−∫x2−4x+3dx I=I1−I2(say)
I1=∫(2x−4)x2−4x+3dx =32(x2−4x+3)3/2+c1
I2=∫x2−4x+3dx=∫x2−4x+4−4+3dx
=∫(x−2)2−12⇒ I2=21(x−2)x2−4x+32−1.12log{(x−2)+x2−4x+3} =21(x−2)x2−4x+3 2−1log[(x−2)+x2−4x+3]+c2, Therefore I=I1−I2
I=32(x2−4x+3)3/2+21(−2)x2−4x+3−21log[(x−2)+x2−4x+3]+c (Where c=c1+c2)