Solveeit Logo

Question

Question: \(\int_{2}^{3}{\frac{dx}{x^{2} - x} =}\)...

23dxx2x=\int_{2}^{3}{\frac{dx}{x^{2} - x} =}

A

log(2/3)\log(2/3)

B

log(1/4)\log(1/4)

C

log(4/3)\log(4/3)

D

log(8/3)\log(8/3)

Answer

log(4/3)\log(4/3)

Explanation

Solution

I=23dxx2x=23dxx(x1)=23[1x11x]dxI = \int_{2}^{3}\frac{dx}{x^{2} - x}\mathbf{=}\int_{\mathbf{2}}^{\mathbf{3}}\frac{\mathbf{dx}}{\mathbf{x(x - 1)}}\mathbf{=}\int_{\mathbf{2}}^{\mathbf{3}}\left\lbrack \frac{\mathbf{1}}{\mathbf{x}\mathbf{-}\mathbf{1}}\mathbf{-}\frac{\mathbf{1}}{\mathbf{x}} \right\rbrack\mathbf{dx}

=231(x1)dx231xdx=[log(x1)]23[logx]23\mathbf{=}\int_{\mathbf{2}}^{\mathbf{3}}\frac{\mathbf{1}}{\mathbf{(x - 1)}}\mathbf{dx -}\int_{\mathbf{2}}^{\mathbf{3}}{\frac{\mathbf{1}}{\mathbf{x}}\mathbf{dx}}\mathbf{= \lbrack}\mathbf{\log}\mathbf{(}\mathbf{x}\mathbf{-}\mathbf{1)}\mathbf{\rbrack}_{\mathbf{2}}^{\mathbf{3}}\mathbf{-}\mathbf{\lbrack}\mathbf{\log}\mathbf{x}\mathbf{\rbrack}_{\mathbf{2}}^{\mathbf{3}}

=[log2log1][log3log2]=2log2log3=log43\mathbf{= \lbrack}\mathbf{\log}\mathbf{2}\mathbf{-}\mathbf{\log}\mathbf{1}\mathbf{\rbrack - \lbrack}\mathbf{\log}\mathbf{3}\mathbf{-}\mathbf{\log}\mathbf{2}\mathbf{\rbrack}\mathbf{= 2}\mathbf{\log}\mathbf{2}\mathbf{-}\mathbf{\log}\mathbf{3}\mathbf{=}\mathbf{\log}\frac{\mathbf{4}}{\mathbf{3}}.