Solveeit Logo

Question

Question: \(\int_{1}^{\sqrt{3}}{\frac{1}{1 + x^{2}}dx}\) is equal to...

1311+x2dx\int_{1}^{\sqrt{3}}{\frac{1}{1 + x^{2}}dx} is equal to

A

π/12\pi ⥂ / ⥂ 12

B

π/6\pi ⥂ / ⥂ 6

C

π/4\pi ⥂ / ⥂ 4

D

π/3\pi ⥂ / ⥂ 3

Answer

π/12\pi ⥂ / ⥂ 12

Explanation

Solution

1311+x2dx=[tan1x]13=π3π4=π12\int_{\mathbf{1}}^{\sqrt{\mathbf{3}}}{\frac{\mathbf{1}}{\mathbf{1 +}\mathbf{x}^{\mathbf{2}}}\mathbf{dx = \lbrack}\mathbf{\tan}^{\mathbf{-}\mathbf{1}}\mathbf{x}\mathbf{\rbrack}_{\mathbf{1}}^{\sqrt{\mathbf{3}}}\mathbf{=}\frac{\mathbf{\pi}}{\mathbf{3}}\mathbf{-}\frac{\mathbf{\pi}}{\mathbf{4}}\mathbf{=}\frac{\mathbf{\pi}}{\mathbf{12}}}.