Solveeit Logo

Question

Question: $\int_1^0 ((1-x^{25})\frac{20}{1} - (1-x^{20})\frac{25}{1}) dx$ (VII)...

10((1x25)201(1x20)251)dx\int_1^0 ((1-x^{25})\frac{20}{1} - (1-x^{20})\frac{25}{1}) dx (VII)

Answer

1250273\frac{1250}{273}

Explanation

Solution

The problem asks us to evaluate the definite integral 10((1x25)201(1x20)251)dx\int_1^0 ((1-x^{25})\frac{20}{1} - (1-x^{20})\frac{25}{1}) dx.

First, simplify the integrand: (1x25)20(1x20)25(1-x^{25})20 - (1-x^{20})25 =2020x25(2525x20)= 20 - 20x^{25} - (25 - 25x^{20}) =2020x2525+25x20= 20 - 20x^{25} - 25 + 25x^{20} =25x2020x255= 25x^{20} - 20x^{25} - 5

Now, substitute this simplified expression back into the integral: I=10(25x2020x255)dxI = \int_1^0 (25x^{20} - 20x^{25} - 5) dx

We can integrate term by term using the power rule for integration, xndx=xn+1n+1\int x^n dx = \frac{x^{n+1}}{n+1}: (25x2020x255)dx=25x20+120+120x25+125+15x\int (25x^{20} - 20x^{25} - 5) dx = 25\frac{x^{20+1}}{20+1} - 20\frac{x^{25+1}}{25+1} - 5x =25x212120x26265x= 25\frac{x^{21}}{21} - 20\frac{x^{26}}{26} - 5x =2521x211013x265x= \frac{25}{21}x^{21} - \frac{10}{13}x^{26} - 5x

Now, evaluate the definite integral using the limits from 1 to 0: I=[2521x211013x265x]10I = \left[ \frac{25}{21}x^{21} - \frac{10}{13}x^{26} - 5x \right]_1^0 Apply the Fundamental Theorem of Calculus, which states abf(x)dx=F(b)F(a)\int_a^b f(x) dx = F(b) - F(a): I=(2521(0)211013(0)265(0))(2521(1)211013(1)265(1))I = \left( \frac{25}{21}(0)^{21} - \frac{10}{13}(0)^{26} - 5(0) \right) - \left( \frac{25}{21}(1)^{21} - \frac{10}{13}(1)^{26} - 5(1) \right) I=(000)(252110135)I = (0 - 0 - 0) - \left( \frac{25}{21} - \frac{10}{13} - 5 \right) I=(252110135)I = - \left( \frac{25}{21} - \frac{10}{13} - 5 \right) I=2521+1013+5I = - \frac{25}{21} + \frac{10}{13} + 5

To combine these fractions, find a common denominator for 21 and 13. Since 21 and 13 are coprime, the least common multiple (LCM) is 21×13=27321 \times 13 = 273. I=25×1321×13+10×2113×21+5×273273I = \frac{-25 \times 13}{21 \times 13} + \frac{10 \times 21}{13 \times 21} + \frac{5 \times 273}{273} I=325273+210273+1365273I = \frac{-325}{273} + \frac{210}{273} + \frac{1365}{273} I=325+210+1365273I = \frac{-325 + 210 + 1365}{273} I=115+1365273I = \frac{-115 + 1365}{273} I=1250273I = \frac{1250}{273}