Solveeit Logo

Question

Question: $\int_{0}^{v}\frac{dv}{F-rv} = \int_{0}^{t}\frac{dt}{M+rt}$...

0vdvFrv=0tdtM+rt\int_{0}^{v}\frac{dv}{F-rv} = \int_{0}^{t}\frac{dt}{M+rt}

Answer

The final expression for vv is: v=FrtrM+r2tv = \frac{Frt}{rM + r^2t}

Explanation

Solution

The problem provides a derivation starting from an integral equation and ending with an expression for vv. The task is to present the solution, which involves verifying and explaining these steps.

The given integral equation is: 0vdvFrv=0tdtM+rt\int_{0}^{v}\frac{dv}{F-rv} = \int_{0}^{t}\frac{dt}{M+rt}

Explanation of the Solution

  1. Integrate the Left-Hand Side (LHS): Let u=Frvu = F-rv. Then, du=rdvdu = -r \, dv, which implies dv=1rdudv = -\frac{1}{r} du. The limits of integration change: when v=0v=0, u=Fu=F; when v=vv=v, u=Frvu=F-rv. LHS=FFrv1u(1r)du=1r[lnu]FFrv\text{LHS} = \int_{F}^{F-rv} \frac{1}{u} \left(-\frac{1}{r}\right) du = -\frac{1}{r} [\ln|u|]_{F}^{F-rv} =1r(lnFrvlnF)=1r(lnFlnFrv)= -\frac{1}{r} (\ln|F-rv| - \ln|F|) = \frac{1}{r} (\ln|F| - \ln|F-rv|) Assuming F>0F > 0 and Frv>0F-rv > 0 (typical for physical scenarios where vv is less than terminal velocity): LHS=1rln(FFrv)\text{LHS} = \frac{1}{r} \ln\left(\frac{F}{F-rv}\right)

  2. Integrate the Right-Hand Side (RHS): Let w=M+rtw = M+rt. Then, dw=rdtdw = r \, dt, which implies dt=1rdwdt = \frac{1}{r} dw. The limits of integration change: when t=0t=0, w=Mw=M; when t=tt=t, w=M+rtw=M+rt. RHS=MM+rt1w(1r)dw=1r[lnw]MM+rt\text{RHS} = \int_{M}^{M+rt} \frac{1}{w} \left(\frac{1}{r}\right) dw = \frac{1}{r} [\ln|w|]_{M}^{M+rt} =1r(lnM+rtlnM)= \frac{1}{r} (\ln|M+rt| - \ln|M|) Assuming M>0M > 0 and M+rt>0M+rt > 0 (which is true for positive mass and time): RHS=1rln(M+rtM)\text{RHS} = \frac{1}{r} \ln\left(\frac{M+rt}{M}\right)

  3. Equate and Simplify: Equating the integrated LHS and RHS: 1rln(FFrv)=1rln(M+rtM)\frac{1}{r} \ln\left(\frac{F}{F-rv}\right) = \frac{1}{r} \ln\left(\frac{M+rt}{M}\right) Multiplying both sides by rr: ln(FFrv)=ln(M+rtM)\ln\left(\frac{F}{F-rv}\right) = \ln\left(\frac{M+rt}{M}\right) This matches the second line of the provided derivation.

  4. Solve for vv: Exponentiate both sides (take ee to the power of both sides) to remove the logarithms: eln(FFrv)=eln(M+rtM)e^{\ln\left(\frac{F}{F-rv}\right)} = e^{\ln\left(\frac{M+rt}{M}\right)} FFrv=M+rtM\frac{F}{F-rv} = \frac{M+rt}{M} Cross-multiply: FM=(Frv)(M+rt)F \cdot M = (F-rv)(M+rt) Expand the right side: FM=FM+FrtrvMr2vtFM = FM + Frt - rvM - r^2vt Subtract FMFM from both sides: 0=FrtrvMr2vt0 = Frt - rvM - r^2vt Rearrange the terms to solve for vv: rvM+r2vt=FrtrvM + r^2vt = Frt Factor out vv from the terms on the left: v(rM+r2t)=Frtv(rM + r^2t) = Frt Finally, solve for vv: v=FrtrM+r2tv = \frac{Frt}{rM + r^2t} This matches the third line of the provided derivation.