Solveeit Logo

Question

Question: \(\int_{0}^{\pi}{\sin^{2}xdx}\) is equal to...

0πsin2xdx\int_{0}^{\pi}{\sin^{2}xdx} is equal to

A

π

B

π/2

C

0

D

None of these

Answer

π/2

Explanation

Solution

I=120π2sin2xdx=120π[1cos2x]dxI = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } 2 \sin ^ { 2 } x d x = \frac { 1 } { 2 } \int _ { 0 } ^ { \pi } [ 1 - \cos 2 x ] d x

I=12[xsin2x2]0πI = \frac{1}{2}\left\lbrack x - \frac{\sin 2x}{2} \right\rbrack_{0}^{\pi}I=12[π]=π2I = \frac{1}{2}\lbrack\pi\rbrack = \frac{\pi}{2}.