Solveeit Logo

Question

Question: \(\int_{0}^{\pi}{e^{\sin^{2}x}\cos^{3}xdx}\)= **OR** For any integer n, \(\int_{0}^{\pi}{e^{\sin^{2...

0πesin2xcos3xdx\int_{0}^{\pi}{e^{\sin^{2}x}\cos^{3}xdx}= OR

For any integer n, 0πesin2xcos3(2n+1)xdx\int_{0}^{\pi}{e^{\sin^{2}x}\cos^{3}(2n + 1)xdx}=

A

–1

B

0

C

1

D

None of these

Answer

0

Explanation

Solution

Let, f1(x)=cos3x=f(πx)f_{1}(x) = \cos^{3}x = - f(\pi - x) and

f2(x)=cos3(2n+1)x=f(πx)f_{2}(x) = \cos^{3}(2n + 1)x = - f(\pi - x)

I = 0.