Solveeit Logo

Question

Question: \[\int_{0}^{\pi/4}{\tan^{2}xdx =}\]...

0π/4tan2xdx=\int_{0}^{\pi/4}{\tan^{2}xdx =}

A

1π41 - \frac{\pi}{4}

B

1+π41 + \frac{\pi}{4}

C

π41\frac{\pi}{4} - 1

D

π4\frac{\pi}{4}

Answer

1π41 - \frac{\pi}{4}

Explanation

Solution

0π/4tan2xdx=0π/4(sec2x1)dx\int_{0}^{\pi/4}{\tan^{2}xdx = \int_{0}^{\pi/4}{(\sec^{2}x - 1)dx}}

=0π/4sec2xdx0π/41dx= \int_{0}^{\pi/4}{\sec^{2}xdx - \int_{0}^{\pi/4}{1dx}}= [tanx]0π/4[x]0π/4=1π4\lbrack\tan x\rbrack_{0}^{\pi/4} - \lbrack x\rbrack_{0}^{\pi/4} = 1 - \frac{\pi}{4}.