Question
Question: \[\int_{0}^{\pi/4}{\tan^{2}xdx =}\]...
∫0π/4tan2xdx=
A
1−4π
B
1+4π
C
4π−1
D
4π
Answer
1−4π
Explanation
Solution
∫0π/4tan2xdx=∫0π/4(sec2x−1)dx
=∫0π/4sec2xdx−∫0π/41dx= [tanx]0π/4−[x]0π/4=1−4π.
∫0π/4tan2xdx=
1−4π
1+4π
4π−1
4π
1−4π
∫0π/4tan2xdx=∫0π/4(sec2x−1)dx
=∫0π/4sec2xdx−∫0π/41dx= [tanx]0π/4−[x]0π/4=1−4π.