Solveeit Logo

Question

Question: $\int_{0}^{\pi/4}sec^4x \,dx$...

0π/4sec4xdx\int_{0}^{\pi/4}sec^4x \,dx

Answer

43\frac{4}{3}

Explanation

Solution

Let

u=tanxdu=sec2xdxu = \tan x \quad \Rightarrow \quad du = \sec^2 x\,dx.

Since

sec4xdx=sec2x(sec2xdx)=sec2xdu\sec^4 x\,dx = \sec^2 x (\sec^2 x\,dx) = \sec^2 x\,du,

and noting that sec2x=1+tan2x=1+u2\sec^2x = 1+\tan^2x = 1+u^2, the integral becomes

x=0π/4sec4xdx=u=01(1+u2)du\int_{x=0}^{\pi/4}\sec^4 x\,dx = \int_{u=0}^{1}(1+u^2)\,du.

Integrate:

01(1+u2)du=[u+u33]01=1+13=43\int_0^1 (1+u^2)\,du = \left[u + \frac{u^3}{3}\right]_0^1 = 1 + \frac{1}{3} = \frac{4}{3}.