Solveeit Logo

Question

Question: \(\int_{0}^{\pi/4}{\left( \frac{x}{x\sin x + \cos x} \right)^{2}dx}\) =...

0π/4(xxsinx+cosx)2dx\int_{0}^{\pi/4}{\left( \frac{x}{x\sin x + \cos x} \right)^{2}dx} =

A

3+π4π\frac{3 + \pi}{4 - \pi}

B

4π3+π\frac{4 - \pi}{3 + \pi}

C

4π4+π\frac{4 - \pi}{4 + \pi}

D

4+π4π\frac{4 + \pi}{4 - \pi}

Answer

4π4+π\frac{4 - \pi}{4 + \pi}

Explanation

Solution

Since ddx(1xsinx+cosx)\frac{d}{dx}\left( \frac{1}{x\sin x + \cos x} \right) = xcosx(xsinx+cosx)2\frac{- x\cos x}{(x\sin x + \cos x)^{2}}

integration by parts,

I = [xsecxxsinx+cosx+tanx]0π/4\left\lbrack \frac{- x\sec x}{x\sin x + \cos x} + \tan x \right\rbrack_{0}^{\pi/4} = 4π4+π\frac{4 - \pi}{4 + \pi}