Question
Question: \(\int_{0}^{\pi/4}{\left( \frac{x}{x\sin x + \cos x} \right)^{2}dx}\) =...
∫0π/4(xsinx+cosxx)2dx =
A
4−π3+π
B
3+π4−π
C
4+π4−π
D
4−π4+π
Answer
4+π4−π
Explanation
Solution
Since dxd(xsinx+cosx1) = (xsinx+cosx)2−xcosx
integration by parts,
I = [xsinx+cosx−xsecx+tanx]0π/4 = 4+π4−π