Solveeit Logo

Question

Question: \[\int_{0}^{\pi/2}{\sin^{2m}xdx =}\]...

0π/2sin2mxdx=\int_{0}^{\pi/2}{\sin^{2m}xdx =}

A

2m!(2m.m!)2.π2\frac{2m!}{(2^{m}.m!)^{2}}.\frac{\pi}{2}

B

(2m)!(2m.m!)2.π2\frac{(2m)!}{(2^{m}.m!)^{2}}.\frac{\pi}{2}

C

2m!2m.(m!)2.π2\frac{2m!}{2^{m}.(m!)^{2}}.\frac{\pi}{2}

D

None of these

Answer

(2m)!(2m.m!)2.π2\frac{(2m)!}{(2^{m}.m!)^{2}}.\frac{\pi}{2}

Explanation

Solution

Here the power is even, so from formula

0π/2sin2mxdx=(2m1)2m.(2m3)(2m2).....34.12.π2\int_{0}^{\pi/2}\sin^{2m}xdx = \frac{(2m - 1)}{2m}.\frac{(2m - 3)}{(2m - 2)}.....\frac{3}{4}.\frac{1}{2}.\frac{\pi}{2}

=2m.(2m1)(2m2)....3.2.1.π2[2m.(2m2)(2m4).....4.2]2= \frac{2m.(2m - 1)(2m - 2)....3.2.1.\frac{\pi}{2}}{\lbrack 2m.(2m - 2)(2m - 4).....4.2\rbrack^{2}}

Multiplying the numerator and the denominator by 2m(2m2)....4.22m(2m - 2)....4.2

=(2m)![2m.m(m1)(m2).....2.1]2π2= \frac{(2m)!}{\lbrack 2^{m}.m(m - 1)(m - 2).....2.1\rbrack^{2}}\frac{\pi}{2}

=(2m)!(2m.m!)2π2= \frac{(2m)!}{(2^{m}.m!)^{2}}\frac{\pi}{2} .