Question
Question: \[\int_{0}^{\pi/2}{\sin^{2m}xdx =}\]...
∫0π/2sin2mxdx=
A
(2m.m!)22m!.2π
B
(2m.m!)2(2m)!.2π
C
2m.(m!)22m!.2π
D
None of these
Answer
(2m.m!)2(2m)!.2π
Explanation
Solution
Here the power is even, so from formula
∫0π/2sin2mxdx=2m(2m−1).(2m−2)(2m−3).....43.21.2π
=[2m.(2m−2)(2m−4).....4.2]22m.(2m−1)(2m−2)....3.2.1.2π
Multiplying the numerator and the denominator by 2m(2m−2)....4.2
=[2m.m(m−1)(m−2).....2.1]2(2m)!2π
=(2m.m!)2(2m)!2π .