Solveeit Logo

Question

Question: \(\int_{0}^{\pi/2}\frac{dx}{1 + \sin x}\) equals...

0π/2dx1+sinx\int_{0}^{\pi/2}\frac{dx}{1 + \sin x} equals

A

0

B

1

C

–1

D

2

Answer

1

Explanation

Solution

I=0π//2dxsin2x/2+cos2x/2+2sinx/2cosx/2I=0π/2dx(sinx/2+cosx/2)2=0π/2sec2x/2(1+tanx/2)2dxI = \int_{0}^{\pi//2}\frac{dx}{\sin^{2}x ⥂ / ⥂ 2 + \cos^{2}x ⥂ / ⥂ 2 + 2\sin x ⥂ / ⥂ 2\cos x ⥂ / ⥂ 2}I = \int_{0}^{\pi/2}\frac{dx}{(\sin x ⥂ / ⥂ 2 + \cos x ⥂ / ⥂ 2)^{2}} = \int_{0}^{\pi/2}{\frac{\sec^{2}x ⥂ / ⥂ 2}{(1 + \tan x ⥂ / ⥂ 2)^{2}}dx}Put (1+tanx/2)=t(1 + \tan x ⥂ / ⥂ 2) = t12sec2x/2dx=dt\frac{1}{2}\sec^{2}x ⥂ / ⥂ 2dx = dt

I=212dtt2=2[1t]12=2[1211]=1I = 2{\int_{1}^{2}{\frac{dt}{t^{2}} = - 2\left\lbrack \frac{1}{t} \right\rbrack}}_{1}^{2} = - 2\left\lbrack \frac{1}{2} - \frac{1}{1} \right\rbrack = 1