Solveeit Logo

Question

Question: Evaluate the definite integral: $\int_{0}^{\pi/2} \sin x \cos 2x \, dx$...

Evaluate the definite integral:

0π/2sinxcos2xdx\int_{0}^{\pi/2} \sin x \cos 2x \, dx

A

-1/3

B

1/3

C

-2/3

D

2/3

Answer

-1/3

Explanation

Solution

To evaluate the integral 0π/2sinxcos2xdx\int_{0}^{\pi/2} \sin x \cos 2x \, dx, we can use the product-to-sum trigonometric identity:

sinAcosB=12[sin(A+B)+sin(AB)]\sin A \cos B = \frac{1}{2} [\sin(A+B) + \sin(A-B)]

In our case, A=xA = x and B=2xB = 2x, so:

sinxcos2x=12[sin(x+2x)+sin(x2x)]=12[sin(3x)sin(x)]\sin x \cos 2x = \frac{1}{2} [\sin(x+2x) + \sin(x-2x)] = \frac{1}{2} [\sin(3x) - \sin(x)]

Now, we can rewrite the integral as:

0π/2sinxcos2xdx=120π/2[sin(3x)sin(x)]dx\int_{0}^{\pi/2} \sin x \cos 2x \, dx = \frac{1}{2} \int_{0}^{\pi/2} [\sin(3x) - \sin(x)] \, dx

We can split the integral into two parts:

12[0π/2sin(3x)dx0π/2sin(x)dx]\frac{1}{2} \left[ \int_{0}^{\pi/2} \sin(3x) \, dx - \int_{0}^{\pi/2} \sin(x) \, dx \right]

Now, we evaluate each integral separately:

  1. 0π/2sin(3x)dx=[13cos(3x)]0π/2=13cos(3π2)(13cos(0))=13(0)+13(1)=13\int_{0}^{\pi/2} \sin(3x) \, dx = \left[ -\frac{1}{3} \cos(3x) \right]_{0}^{\pi/2} = -\frac{1}{3} \cos\left(\frac{3\pi}{2}\right) - \left(-\frac{1}{3} \cos(0)\right) = -\frac{1}{3}(0) + \frac{1}{3}(1) = \frac{1}{3}

  2. 0π/2sin(x)dx=[cos(x)]0π/2=cos(π2)(cos(0))=0+1=1\int_{0}^{\pi/2} \sin(x) \, dx = \left[ -\cos(x) \right]_{0}^{\pi/2} = -\cos\left(\frac{\pi}{2}\right) - (-\cos(0)) = -0 + 1 = 1

Substitute these results back into the original expression:

12[131]=12[23]=13\frac{1}{2} \left[ \frac{1}{3} - 1 \right] = \frac{1}{2} \left[ -\frac{2}{3} \right] = -\frac{1}{3}

Therefore, the value of the definite integral is 13-\frac{1}{3}.