Solveeit Logo

Question

Question: $\int_{0}^{\pi/2} \frac{\sin x \cos x dx}{\cos^2 x+3 \cos x+2} =$...

0π/2sinxcosxdxcos2x+3cosx+2=\int_{0}^{\pi/2} \frac{\sin x \cos x dx}{\cos^2 x+3 \cos x+2} =

Answer

ln(9/8)\ln(9/8)

Explanation

Solution

Let the integral be II. I=0π/2sinxcosxdxcos2x+3cosx+2I = \int_{0}^{\pi/2} \frac{\sin x \cos x dx}{\cos^2 x+3 \cos x+2} Let u=cosxu = \cos x. Then du=sinxdxdu = -\sin x dx. When x=0x=0, u=cos(0)=1u = \cos(0) = 1. When x=π/2x=\pi/2, u=cos(π/2)=0u = \cos(\pi/2) = 0. Substituting these into the integral, we get: I=10u(du)u2+3u+2I = \int_{1}^{0} \frac{u (-du)}{u^2+3u+2} I=10uduu2+3u+2I = \int_{1}^{0} \frac{-u du}{u^2+3u+2} We can swap the limits of integration by changing the sign of the integral: I=01uduu2+3u+2I = \int_{0}^{1} \frac{u du}{u^2+3u+2} Factor the denominator: u2+3u+2=(u+1)(u+2)u^2+3u+2 = (u+1)(u+2). So the integral becomes: I=01u(u+1)(u+2)duI = \int_{0}^{1} \frac{u}{(u+1)(u+2)} du We use partial fraction decomposition for the integrand: u(u+1)(u+2)=Au+1+Bu+2\frac{u}{(u+1)(u+2)} = \frac{A}{u+1} + \frac{B}{u+2} Multiplying both sides by (u+1)(u+2)(u+1)(u+2), we get: u=A(u+2)+B(u+1)u = A(u+2) + B(u+1) To find AA, set u=1u=-1: 1=A(1+2)+B(1+1)    1=A(1)+B(0)    A=1-1 = A(-1+2) + B(-1+1) \implies -1 = A(1) + B(0) \implies A = -1 To find BB, set u=2u=-2: 2=A(2+2)+B(2+1)    2=A(0)+B(1)    2=B    B=2-2 = A(-2+2) + B(-2+1) \implies -2 = A(0) + B(-1) \implies -2 = -B \implies B = 2 So, the integrand is: u(u+1)(u+2)=1u+1+2u+2\frac{u}{(u+1)(u+2)} = \frac{-1}{u+1} + \frac{2}{u+2} Now, we integrate the decomposed fractions: I=01(2u+21u+1)duI = \int_{0}^{1} \left( \frac{2}{u+2} - \frac{1}{u+1} \right) du I=[2lnu+2lnu+1]01I = \left[ 2 \ln|u+2| - \ln|u+1| \right]_{0}^{1} Evaluate the definite integral at the limits: I=(2ln1+2ln1+1)(2ln0+2ln0+1)I = (2 \ln|1+2| - \ln|1+1|) - (2 \ln|0+2| - \ln|0+1|) I=(2ln3ln2)(2ln2ln1)I = (2 \ln 3 - \ln 2) - (2 \ln 2 - \ln 1) Since ln1=0\ln 1 = 0: I=(2ln3ln2)(2ln20)I = (2 \ln 3 - \ln 2) - (2 \ln 2 - 0) I=2ln3ln22ln2I = 2 \ln 3 - \ln 2 - 2 \ln 2 I=2ln33ln2I = 2 \ln 3 - 3 \ln 2 Using the logarithm property alnb=ln(ba)a \ln b = \ln(b^a): I=ln(32)ln(23)I = \ln(3^2) - \ln(2^3) I=ln9ln8I = \ln 9 - \ln 8 Using the logarithm property lnalnb=ln(a/b)\ln a - \ln b = \ln(a/b): I=ln(98)I = \ln \left(\frac{9}{8}\right)