Solveeit Logo

Question

Question: $\int_{0}^{\pi/2} cos^{1/2} x \ dx$...

0π/2cos1/2x dx\int_{0}^{\pi/2} cos^{1/2} x \ dx

Answer

2πΓ(34)Γ(14)\frac{2 \sqrt{\pi} \Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}

Explanation

Solution

To evaluate the definite integral 0π/2cos1/2x dx\int_{0}^{\pi/2} \cos^{1/2} x \ dx, we can use the properties of Beta and Gamma functions.

The integral is of the form 0π/2sinmxcosnx dx\int_{0}^{\pi/2} \sin^m x \cos^n x \ dx.
In our case, m=0m=0 and n=1/2n=1/2.

The general formula for this type of integral in terms of Gamma functions is: 0π/2sinmxcosnx dx=Γ(m+12)Γ(n+12)2Γ(m+n+22)\int_{0}^{\pi/2} \sin^m x \cos^n x \ dx = \frac{\Gamma\left(\frac{m+1}{2}\right) \Gamma\left(\frac{n+1}{2}\right)}{2 \Gamma\left(\frac{m+n+2}{2}\right)}

Substitute m=0m=0 and n=1/2n=1/2 into the formula: 0π/2cos1/2x dx=Γ(0+12)Γ(1/2+12)2Γ(0+1/2+22)\int_{0}^{\pi/2} \cos^{1/2} x \ dx = \frac{\Gamma\left(\frac{0+1}{2}\right) \Gamma\left(\frac{1/2+1}{2}\right)}{2 \Gamma\left(\frac{0+1/2+2}{2}\right)} =Γ(12)Γ(3/22)2Γ(5/22)= \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{3/2}{2}\right)}{2 \Gamma\left(\frac{5/2}{2}\right)} =Γ(12)Γ(34)2Γ(54)= \frac{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{3}{4}\right)}{2 \Gamma\left(\frac{5}{4}\right)}

Now, we use the following properties of the Gamma function:

  1. Γ(12)=π\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}
  2. Γ(z+1)=zΓ(z)\Gamma(z+1) = z \Gamma(z)

Applying the second property to Γ(54)\Gamma\left(\frac{5}{4}\right): Γ(54)=Γ(1+14)=14Γ(14)\Gamma\left(\frac{5}{4}\right) = \Gamma\left(1 + \frac{1}{4}\right) = \frac{1}{4} \Gamma\left(\frac{1}{4}\right)

Substitute these values back into the expression: 0π/2cos1/2x dx=πΓ(34)2(14Γ(14))\int_{0}^{\pi/2} \cos^{1/2} x \ dx = \frac{\sqrt{\pi} \Gamma\left(\frac{3}{4}\right)}{2 \left(\frac{1}{4} \Gamma\left(\frac{1}{4}\right)\right)} =πΓ(34)12Γ(14)= \frac{\sqrt{\pi} \Gamma\left(\frac{3}{4}\right)}{\frac{1}{2} \Gamma\left(\frac{1}{4}\right)} =2πΓ(34)Γ(14)= \frac{2 \sqrt{\pi} \Gamma\left(\frac{3}{4}\right)}{\Gamma\left(\frac{1}{4}\right)}

This is the most simplified form of the integral in terms of Gamma functions. The values of Γ(1/4)\Gamma(1/4) and Γ(3/4)\Gamma(3/4) are not elementary and are usually left in this form in competitive exams unless specific numerical approximations or further properties are required.