Solveeit Logo

Question

Question: $\int_{0}^{\pi} \sin^{5}x \cos^{4}x \,dx$ equals to...

0πsin5xcos4xdx\int_{0}^{\pi} \sin^{5}x \cos^{4}x \,dx equals to

A

16315\frac{16}{315}

B

8315\frac{8}{315}

C

8π315\frac{8\pi}{315}

D

16π315\frac{16\pi}{315}

Answer

16315\frac{16}{315}

Explanation

Solution

Let I=0πsin5xcos4xdxI = \int_{0}^{\pi} \sin^{5}x \cos^{4}x \,dx. We use the property 0af(x)dx=0af(ax)dx\int_{0}^{a} f(x) \,dx = \int_{0}^{a} f(a-x) \,dx. Let f(x)=sin5xcos4xf(x) = \sin^{5}x \cos^{4}x. Then f(πx)=sin5(πx)cos4(πx)=(sinx)5(cosx)4=sin5xcos4x=f(x)f(\pi-x) = \sin^{5}(\pi-x) \cos^{4}(\pi-x) = (\sin x)^{5} (-\cos x)^{4} = \sin^{5}x \cos^{4}x = f(x). Thus, I=0πsin5xcos4xdx=20π/2sin5xcos4xdxI = \int_{0}^{\pi} \sin^{5}x \cos^{4}x \,dx = 2 \int_{0}^{\pi/2} \sin^{5}x \cos^{4}x \,dx. Let u=cosxu = \cos x, then du=sinxdxdu = -\sin x \,dx. When x=0x=0, u=1u=1. When x=π/2x=\pi/2, u=0u=0. sin5xcos4x=sin4xcos4xsinx=(1cos2x)2cos4xsinx=(1u2)2u4(du)\sin^{5}x \cos^{4}x = \sin^{4}x \cos^{4}x \sin x = (1-\cos^{2}x)^{2} \cos^{4}x \sin x = (1-u^{2})^{2} u^{4} (-du). So, I=210(1u2)2u4(du)=201(12u2+u4)u4duI = 2 \int_{1}^{0} (1-u^{2})^{2} u^{4} (-du) = 2 \int_{0}^{1} (1-2u^{2}+u^{4}) u^{4} \,du I=201(u42u6+u8)du=2[u552u77+u99]01I = 2 \int_{0}^{1} (u^{4} - 2u^{6} + u^{8}) \,du = 2 \left[ \frac{u^{5}}{5} - \frac{2u^{7}}{7} + \frac{u^{9}}{9} \right]_{0}^{1} I=2(1527+19)=2(6390+35315)=2(8315)=16315I = 2 \left( \frac{1}{5} - \frac{2}{7} + \frac{1}{9} \right) = 2 \left( \frac{63 - 90 + 35}{315} \right) = 2 \left( \frac{8}{315} \right) = \frac{16}{315}.