Solveeit Logo

Question

Question: $\int_{0}^{\pi} \frac{x \cos x}{(1 + \sin x)^2} dx$...

0πxcosx(1+sinx)2dx\int_{0}^{\pi} \frac{x \cos x}{(1 + \sin x)^2} dx

Answer

2 - \pi

Explanation

Solution

To evaluate the integral I=0πxcosx(1+sinx)2dxI = \int_{0}^{\pi} \frac{x \cos x}{(1 + \sin x)^2} dx, we use integration by parts. The formula for integration by parts is udv=uvvdu\int u \, dv = uv - \int v \, du.

Let u=xu = x and dv=cosx(1+sinx)2dxdv = \frac{\cos x}{(1 + \sin x)^2} dx.

First, find dudu and vv: du=dxdu = dx.

To find vv, integrate dvdv: v=cosx(1+sinx)2dxv = \int \frac{\cos x}{(1 + \sin x)^2} dx. Let t=1+sinxt = 1 + \sin x. Then dt=cosxdxdt = \cos x \, dx. So, v=dtt2=1t=11+sinxv = \int \frac{dt}{t^2} = -\frac{1}{t} = -\frac{1}{1 + \sin x}.

Now, substitute these into the integration by parts formula: I=[x(11+sinx)]0π0π(11+sinx)dxI = \left[ x \left(-\frac{1}{1 + \sin x}\right) \right]_{0}^{\pi} - \int_{0}^{\pi} \left(-\frac{1}{1 + \sin x}\right) dx I=[x1+sinx]0π+0π11+sinxdxI = \left[ -\frac{x}{1 + \sin x} \right]_{0}^{\pi} + \int_{0}^{\pi} \frac{1}{1 + \sin x} dx

Evaluate the first term: [x1+sinx]0π=(π1+sinπ)(01+sin0)\left[ -\frac{x}{1 + \sin x} \right]_{0}^{\pi} = \left(-\frac{\pi}{1 + \sin \pi}\right) - \left(-\frac{0}{1 + \sin 0}\right) Since sinπ=0\sin \pi = 0 and sin0=0\sin 0 = 0: =(π1+0)(01+0)= \left(-\frac{\pi}{1 + 0}\right) - \left(-\frac{0}{1 + 0}\right) =π0=π= -\pi - 0 = -\pi.

Now, we need to evaluate the second integral: J=0π11+sinxdxJ = \int_{0}^{\pi} \frac{1}{1 + \sin x} dx. We can simplify the integrand by multiplying the numerator and denominator by (1sinx)(1 - \sin x): J=0π1sinx(1+sinx)(1sinx)dx=0π1sinx1sin2xdxJ = \int_{0}^{\pi} \frac{1 - \sin x}{(1 + \sin x)(1 - \sin x)} dx = \int_{0}^{\pi} \frac{1 - \sin x}{1 - \sin^2 x} dx J=0π1sinxcos2xdx=0π(1cos2xsinxcos2x)dxJ = \int_{0}^{\pi} \frac{1 - \sin x}{\cos^2 x} dx = \int_{0}^{\pi} \left( \frac{1}{\cos^2 x} - \frac{\sin x}{\cos^2 x} \right) dx J=0π(sec2xsecxtanx)dxJ = \int_{0}^{\pi} (\sec^2 x - \sec x \tan x) dx

The antiderivative of sec2xsecxtanx\sec^2 x - \sec x \tan x is tanxsecx\tan x - \sec x. However, tanx\tan x and secx\sec x are undefined at x=π/2x = \pi/2, which is within the integration interval [0,π][0, \pi]. Thus, we must evaluate the integral as an improper integral or use a property of definite integrals.

Using the property 02af(x)dx=20af(x)dx\int_0^{2a} f(x) dx = 2 \int_0^a f(x) dx if f(2ax)=f(x)f(2a-x) = f(x). Let f(x)=11+sinxf(x) = \frac{1}{1 + \sin x}. Here 2a=π2a = \pi, so a=π/2a = \pi/2. f(πx)=11+sin(πx)=11+sinx=f(x)f(\pi - x) = \frac{1}{1 + \sin(\pi - x)} = \frac{1}{1 + \sin x} = f(x). So, J=0π11+sinxdx=20π/211+sinxdxJ = \int_{0}^{\pi} \frac{1}{1 + \sin x} dx = 2 \int_{0}^{\pi/2} \frac{1}{1 + \sin x} dx.

Now, we evaluate J=0π/2(sec2xsecxtanx)dxJ' = \int_{0}^{\pi/2} (\sec^2 x - \sec x \tan x) dx. J=[tanxsecx]0π/2J' = [\tan x - \sec x]_{0}^{\pi/2}. Since the antiderivative is undefined at π/2\pi/2, we take the limit: J=limbπ/2(tanbsecb)(tan0sec0)J' = \lim_{b \to \pi/2^-} (\tan b - \sec b) - (\tan 0 - \sec 0) J=limbπ/2(sinbcosb1cosb)(01)J' = \lim_{b \to \pi/2^-} \left( \frac{\sin b}{\cos b} - \frac{1}{\cos b} \right) - (0 - 1) J=limbπ/2(sinb1cosb)+1J' = \lim_{b \to \pi/2^-} \left( \frac{\sin b - 1}{\cos b} \right) + 1. This limit is of the form 0/00/0, so we apply L'Hopital's rule: J=limbπ/2(cosbsinb)+1J' = \lim_{b \to \pi/2^-} \left( \frac{\cos b}{-\sin b} \right) + 1 J=cos(π/2)sin(π/2)+1=01+1=0+1=1J' = \frac{\cos(\pi/2)}{-\sin(\pi/2)} + 1 = \frac{0}{-1} + 1 = 0 + 1 = 1.

So, 0π/211+sinxdx=1\int_{0}^{\pi/2} \frac{1}{1 + \sin x} dx = 1. Therefore, J=2×1=2J = 2 \times 1 = 2.

Substitute this value back into the expression for II: I=π+JI = -\pi + J I=π+2I = -\pi + 2.

The final answer is 2π2 - \pi.