Solveeit Logo

Question

Question: $\int_{0}^{\pi} (a^{2}cos^{2}x + b^{2}sin^{2}x)^{2} dx$...

0π(a2cos2x+b2sin2x)2dx\int_{0}^{\pi} (a^{2}cos^{2}x + b^{2}sin^{2}x)^{2} dx

Answer

π8(3a4+3b4+2a2b2)\frac{\pi}{8}(3a^{4} + 3b^{4} + 2a^{2}b^{2})

Explanation

Solution

To evaluate the definite integral I=0π(a2cos2x+b2sin2x)2dxI = \int_{0}^{\pi} (a^{2}cos^{2}x + b^{2}sin^{2}x)^{2} dx, we will follow these steps:

  1. Expand the integrand.
  2. Use trigonometric identities to reduce the powers of cosx\cos x and sinx\sin x.
  3. Integrate each term over the interval [0,π][0, \pi].
  4. Sum the results.

Step 1: Expand the integrand

The integrand is (a2cos2x+b2sin2x)2(a^{2}cos^{2}x + b^{2}sin^{2}x)^{2}. Expanding this gives:

(a2cos2x+b2sin2x)2=(a2cos2x)2+(b2sin2x)2+2(a2cos2x)(b2sin2x)(a^{2}cos^{2}x + b^{2}sin^{2}x)^{2} = (a^{2}cos^{2}x)^{2} + (b^{2}sin^{2}x)^{2} + 2(a^{2}cos^{2}x)(b^{2}sin^{2}x) =a4cos4x+b4sin4x+2a2b2cos2xsin2x= a^{4}cos^{4}x + b^{4}sin^{4}x + 2a^{2}b^{2}cos^{2}x sin^{2}x

So, the integral becomes:

I=0π(a4cos4x+b4sin4x+2a2b2cos2xsin2x)dxI = \int_{0}^{\pi} (a^{4}cos^{4}x + b^{4}sin^{4}x + 2a^{2}b^{2}cos^{2}x sin^{2}x) dx I=a40πcos4xdx+b40πsin4xdx+2a2b20πcos2xsin2xdxI = a^{4}\int_{0}^{\pi} cos^{4}x dx + b^{4}\int_{0}^{\pi} sin^{4}x dx + 2a^{2}b^{2}\int_{0}^{\pi} cos^{2}x sin^{2}x dx

Step 2: Evaluate each integral separately using trigonometric identities

We use the following identities:

cos2x=1+cos(2x)2cos^{2}x = \frac{1+cos(2x)}{2} sin2x=1cos(2x)2sin^{2}x = \frac{1-cos(2x)}{2} cos2(2x)=1+cos(4x)2cos^{2}(2x) = \frac{1+cos(4x)}{2} sin2(2x)=1cos(4x)2sin^{2}(2x) = \frac{1-cos(4x)}{2} sinxcosx=sin(2x)2sin x cos x = \frac{sin(2x)}{2}

Integral 1: 0πcos4xdx\int_{0}^{\pi} cos^{4}x dx

cos4x=(cos2x)2=(1+cos(2x)2)2=1+2cos(2x)+cos2(2x)4cos^{4}x = (cos^{2}x)^{2} = \left(\frac{1+cos(2x)}{2}\right)^{2} = \frac{1+2cos(2x)+cos^{2}(2x)}{4}

Substitute cos2(2x)=1+cos(4x)2cos^{2}(2x) = \frac{1+cos(4x)}{2}:

cos4x=1+2cos(2x)+1+cos(4x)24=2+4cos(2x)+1+cos(4x)8=3+4cos(2x)+cos(4x)8cos^{4}x = \frac{1+2cos(2x)+\frac{1+cos(4x)}{2}}{4} = \frac{2+4cos(2x)+1+cos(4x)}{8} = \frac{3+4cos(2x)+cos(4x)}{8}

Now, integrate:

0πcos4xdx=0π3+4cos(2x)+cos(4x)8dx\int_{0}^{\pi} cos^{4}x dx = \int_{0}^{\pi} \frac{3+4cos(2x)+cos(4x)}{8} dx =18[3x+4sin(2x)2+sin(4x)4]0π= \frac{1}{8} \left[3x + \frac{4sin(2x)}{2} + \frac{sin(4x)}{4}\right]_{0}^{\pi} =18[3x+2sin(2x)+sin(4x)4]0π= \frac{1}{8} \left[3x + 2sin(2x) + \frac{sin(4x)}{4}\right]_{0}^{\pi} =18[(3π+2sin(2π)+sin(4π)4)(0+2sin(0)+sin(0)4)]= \frac{1}{8} \left[(3\pi + 2sin(2\pi) + \frac{sin(4\pi)}{4}) - (0 + 2sin(0) + \frac{sin(0)}{4})\right]

Since sin(nπ)=0sin(n\pi) = 0 for any integer nn:

=18(3π+0+00)=3π8= \frac{1}{8} (3\pi + 0 + 0 - 0) = \frac{3\pi}{8}

Integral 2: 0πsin4xdx\int_{0}^{\pi} sin^{4}x dx

sin4x=(sin2x)2=(1cos(2x)2)2=12cos(2x)+cos2(2x)4sin^{4}x = (sin^{2}x)^{2} = \left(\frac{1-cos(2x)}{2}\right)^{2} = \frac{1-2cos(2x)+cos^{2}(2x)}{4}

Substitute cos2(2x)=1+cos(4x)2cos^{2}(2x) = \frac{1+cos(4x)}{2}:

sin4x=12cos(2x)+1+cos(4x)24=24cos(2x)+1+cos(4x)8=34cos(2x)+cos(4x)8sin^{4}x = \frac{1-2cos(2x)+\frac{1+cos(4x)}{2}}{4} = \frac{2-4cos(2x)+1+cos(4x)}{8} = \frac{3-4cos(2x)+cos(4x)}{8}

Now, integrate:

0πsin4xdx=0π34cos(2x)+cos(4x)8dx\int_{0}^{\pi} sin^{4}x dx = \int_{0}^{\pi} \frac{3-4cos(2x)+cos(4x)}{8} dx =18[3x4sin(2x)2+sin(4x)4]0π= \frac{1}{8} \left[3x - \frac{4sin(2x)}{2} + \frac{sin(4x)}{4}\right]_{0}^{\pi} =18[3x2sin(2x)+sin(4x)4]0π= \frac{1}{8} \left[3x - 2sin(2x) + \frac{sin(4x)}{4}\right]_{0}^{\pi} =18[(3π2sin(2π)+sin(4π)4)(02sin(0)+sin(0)4)]= \frac{1}{8} \left[(3\pi - 2sin(2\pi) + \frac{sin(4\pi)}{4}) - (0 - 2sin(0) + \frac{sin(0)}{4})\right] =18(3π0+00)=3π8= \frac{1}{8} (3\pi - 0 + 0 - 0) = \frac{3\pi}{8}

Integral 3: 0πcos2xsin2xdx\int_{0}^{\pi} cos^{2}x sin^{2}x dx

cos2xsin2x=(cosxsinx)2=(sin(2x)2)2=sin2(2x)4cos^{2}x sin^{2}x = (cos x sin x)^{2} = \left(\frac{sin(2x)}{2}\right)^{2} = \frac{sin^{2}(2x)}{4}

Substitute sin2(2x)=1cos(4x)2sin^{2}(2x) = \frac{1-cos(4x)}{2}:

cos2xsin2x=14(1cos(4x)2)=1cos(4x)8cos^{2}x sin^{2}x = \frac{1}{4} \left(\frac{1-cos(4x)}{2}\right) = \frac{1-cos(4x)}{8}

Now, integrate:

0πcos2xsin2xdx=0π1cos(4x)8dx\int_{0}^{\pi} cos^{2}x sin^{2}x dx = \int_{0}^{\pi} \frac{1-cos(4x)}{8} dx =18[xsin(4x)4]0π= \frac{1}{8} \left[x - \frac{sin(4x)}{4}\right]_{0}^{\pi} =18[(πsin(4π)4)(0sin(0)4)]= \frac{1}{8} \left[(\pi - \frac{sin(4\pi)}{4}) - (0 - \frac{sin(0)}{4})\right] =18(π00)=π8= \frac{1}{8} (\pi - 0 - 0) = \frac{\pi}{8}

Step 3: Substitute the evaluated integrals back into the expression for II

I=a4(3π8)+b4(3π8)+2a2b2(π8)I = a^{4}\left(\frac{3\pi}{8}\right) + b^{4}\left(\frac{3\pi}{8}\right) + 2a^{2}b^{2}\left(\frac{\pi}{8}\right) I=3πa48+3πb48+2πa2b28I = \frac{3\pi a^{4}}{8} + \frac{3\pi b^{4}}{8} + \frac{2\pi a^{2}b^{2}}{8} I=π8(3a4+3b4+2a2b2)I = \frac{\pi}{8} (3a^{4} + 3b^{4} + 2a^{2}b^{2})

The final answer is π8(3a4+3b4+2a2b2)\frac{\pi}{8}(3a^{4} + 3b^{4} + 2a^{2}b^{2}).

Solution: The integral is expanded and then each term is integrated using trigonometric identities to reduce powers. The integral can be written as: I=a40πcos4xdx+b40πsin4xdx+2a2b20πcos2xsin2xdxI = a^{4}\int_{0}^{\pi} \cos^{4}x dx + b^{4}\int_{0}^{\pi} \sin^{4}x dx + 2a^{2}b^{2}\int_{0}^{\pi} \cos^{2}x \sin^{2}x dx Using the identities cos2x=1+cos(2x)2\cos^{2}x = \frac{1+\cos(2x)}{2}, sin2x=1cos(2x)2\sin^{2}x = \frac{1-\cos(2x)}{2}, and sinxcosx=sin(2x)2\sin x \cos x = \frac{\sin(2x)}{2}:

  1. 0πcos4xdx=0π(1+cos(2x)2)2dx=140π(1+2cos(2x)+cos2(2x))dx\int_{0}^{\pi} \cos^{4}x dx = \int_{0}^{\pi} \left(\frac{1+\cos(2x)}{2}\right)^2 dx = \frac{1}{4}\int_{0}^{\pi} (1+2\cos(2x)+\cos^{2}(2x)) dx =140π(1+2cos(2x)+1+cos(4x)2)dx=180π(3+4cos(2x)+cos(4x))dx= \frac{1}{4}\int_{0}^{\pi} \left(1+2\cos(2x)+\frac{1+\cos(4x)}{2}\right) dx = \frac{1}{8}\int_{0}^{\pi} (3+4\cos(2x)+\cos(4x)) dx =18[3x+2sin(2x)+sin(4x)4]0π=3π8= \frac{1}{8}\left[3x + 2\sin(2x) + \frac{\sin(4x)}{4}\right]_{0}^{\pi} = \frac{3\pi}{8}
  2. 0πsin4xdx=0π(1cos(2x)2)2dx=140π(12cos(2x)+cos2(2x))dx\int_{0}^{\pi} \sin^{4}x dx = \int_{0}^{\pi} \left(\frac{1-\cos(2x)}{2}\right)^2 dx = \frac{1}{4}\int_{0}^{\pi} (1-2\cos(2x)+\cos^{2}(2x)) dx =140π(12cos(2x)+1+cos(4x)2)dx=180π(34cos(2x)+cos(4x))dx= \frac{1}{4}\int_{0}^{\pi} \left(1-2\cos(2x)+\frac{1+\cos(4x)}{2}\right) dx = \frac{1}{8}\int_{0}^{\pi} (3-4\cos(2x)+\cos(4x)) dx =18[3x2sin(2x)+sin(4x)4]0π=3π8= \frac{1}{8}\left[3x - 2\sin(2x) + \frac{\sin(4x)}{4}\right]_{0}^{\pi} = \frac{3\pi}{8}
  3. 0πcos2xsin2xdx=0π(sin(2x)2)2dx=140πsin2(2x)dx\int_{0}^{\pi} \cos^{2}x \sin^{2}x dx = \int_{0}^{\pi} \left(\frac{\sin(2x)}{2}\right)^2 dx = \frac{1}{4}\int_{0}^{\pi} \sin^{2}(2x) dx =140π1cos(4x)2dx=180π(1cos(4x))dx= \frac{1}{4}\int_{0}^{\pi} \frac{1-\cos(4x)}{2} dx = \frac{1}{8}\int_{0}^{\pi} (1-\cos(4x)) dx =18[xsin(4x)4]0π=π8= \frac{1}{8}\left[x - \frac{\sin(4x)}{4}\right]_{0}^{\pi} = \frac{\pi}{8}

Substituting these values back into the expression for II: I=a4(3π8)+b4(3π8)+2a2b2(π8)I = a^{4}\left(\frac{3\pi}{8}\right) + b^{4}\left(\frac{3\pi}{8}\right) + 2a^{2}b^{2}\left(\frac{\pi}{8}\right) I=3πa48+3πb48+2πa2b28I = \frac{3\pi a^{4}}{8} + \frac{3\pi b^{4}}{8} + \frac{2\pi a^{2}b^{2}}{8} I=π8(3a4+3b4+2a2b2)I = \frac{\pi}{8}(3a^{4} + 3b^{4} + 2a^{2}b^{2})

Answer: π8(3a4+3b4+2a2b2)\frac{\pi}{8}(3a^{4} + 3b^{4} + 2a^{2}b^{2})