Question
Question: $\int_{0}^{\pi} (a^{2}cos^{2}x + b^{2}sin^{2}x)^{2} dx$...
∫0π(a2cos2x+b2sin2x)2dx

8π(3a4+3b4+2a2b2)
Solution
To evaluate the definite integral I=∫0π(a2cos2x+b2sin2x)2dx, we will follow these steps:
- Expand the integrand.
- Use trigonometric identities to reduce the powers of cosx and sinx.
- Integrate each term over the interval [0,π].
- Sum the results.
Step 1: Expand the integrand
The integrand is (a2cos2x+b2sin2x)2. Expanding this gives:
(a2cos2x+b2sin2x)2=(a2cos2x)2+(b2sin2x)2+2(a2cos2x)(b2sin2x) =a4cos4x+b4sin4x+2a2b2cos2xsin2x
So, the integral becomes:
I=∫0π(a4cos4x+b4sin4x+2a2b2cos2xsin2x)dx I=a4∫0πcos4xdx+b4∫0πsin4xdx+2a2b2∫0πcos2xsin2xdx
Step 2: Evaluate each integral separately using trigonometric identities
We use the following identities:
cos2x=21+cos(2x) sin2x=21−cos(2x) cos2(2x)=21+cos(4x) sin2(2x)=21−cos(4x) sinxcosx=2sin(2x)
Integral 1: ∫0πcos4xdx
cos4x=(cos2x)2=(21+cos(2x))2=41+2cos(2x)+cos2(2x)
Substitute cos2(2x)=21+cos(4x):
cos4x=41+2cos(2x)+21+cos(4x)=82+4cos(2x)+1+cos(4x)=83+4cos(2x)+cos(4x)
Now, integrate:
∫0πcos4xdx=∫0π83+4cos(2x)+cos(4x)dx =81[3x+24sin(2x)+4sin(4x)]0π =81[3x+2sin(2x)+4sin(4x)]0π =81[(3π+2sin(2π)+4sin(4π))−(0+2sin(0)+4sin(0))]
Since sin(nπ)=0 for any integer n:
=81(3π+0+0−0)=83π
Integral 2: ∫0πsin4xdx
sin4x=(sin2x)2=(21−cos(2x))2=41−2cos(2x)+cos2(2x)
Substitute cos2(2x)=21+cos(4x):
sin4x=41−2cos(2x)+21+cos(4x)=82−4cos(2x)+1+cos(4x)=83−4cos(2x)+cos(4x)
Now, integrate:
∫0πsin4xdx=∫0π83−4cos(2x)+cos(4x)dx =81[3x−24sin(2x)+4sin(4x)]0π =81[3x−2sin(2x)+4sin(4x)]0π =81[(3π−2sin(2π)+4sin(4π))−(0−2sin(0)+4sin(0))] =81(3π−0+0−0)=83π
Integral 3: ∫0πcos2xsin2xdx
cos2xsin2x=(cosxsinx)2=(2sin(2x))2=4sin2(2x)
Substitute sin2(2x)=21−cos(4x):
cos2xsin2x=41(21−cos(4x))=81−cos(4x)
Now, integrate:
∫0πcos2xsin2xdx=∫0π81−cos(4x)dx =81[x−4sin(4x)]0π =81[(π−4sin(4π))−(0−4sin(0))] =81(π−0−0)=8π
Step 3: Substitute the evaluated integrals back into the expression for I
I=a4(83π)+b4(83π)+2a2b2(8π) I=83πa4+83πb4+82πa2b2 I=8π(3a4+3b4+2a2b2)
The final answer is 8π(3a4+3b4+2a2b2).
Solution: The integral is expanded and then each term is integrated using trigonometric identities to reduce powers. The integral can be written as: I=a4∫0πcos4xdx+b4∫0πsin4xdx+2a2b2∫0πcos2xsin2xdx Using the identities cos2x=21+cos(2x), sin2x=21−cos(2x), and sinxcosx=2sin(2x):
- ∫0πcos4xdx=∫0π(21+cos(2x))2dx=41∫0π(1+2cos(2x)+cos2(2x))dx =41∫0π(1+2cos(2x)+21+cos(4x))dx=81∫0π(3+4cos(2x)+cos(4x))dx =81[3x+2sin(2x)+4sin(4x)]0π=83π
- ∫0πsin4xdx=∫0π(21−cos(2x))2dx=41∫0π(1−2cos(2x)+cos2(2x))dx =41∫0π(1−2cos(2x)+21+cos(4x))dx=81∫0π(3−4cos(2x)+cos(4x))dx =81[3x−2sin(2x)+4sin(4x)]0π=83π
- ∫0πcos2xsin2xdx=∫0π(2sin(2x))2dx=41∫0πsin2(2x)dx =41∫0π21−cos(4x)dx=81∫0π(1−cos(4x))dx =81[x−4sin(4x)]0π=8π
Substituting these values back into the expression for I: I=a4(83π)+b4(83π)+2a2b2(8π) I=83πa4+83πb4+82πa2b2 I=8π(3a4+3b4+2a2b2)
Answer: 8π(3a4+3b4+2a2b2)