Question
Question: \(\int_{0}^{\log_{e}5}\frac{e^{x}\sqrt{e^{x}–1}}{e^{x} + 3}\) dx =...
∫0loge5ex+3exex–1 dx =
A
3 + 2p
B
4 – p
C
2 + p
D
4 + p
Answer
4 – p
Explanation
Solution
Put ex – 1 = t2
Ž ex dx = 2tdt
Ž I = ∫02t2+4t.2tdt
∫0loge5ex+3exex–1 dx =
3 + 2p
4 – p
2 + p
4 + p
4 – p
Put ex – 1 = t2
Ž ex dx = 2tdt
Ž I = ∫02t2+4t.2tdt