Solveeit Logo

Question

Question: \(\int_{0}^{\infty}{\log\left( x + \frac{1}{x} \right)\frac{dx}{1 + x^{2}}}\) is equal to...

0log(x+1x)dx1+x2\int_{0}^{\infty}{\log\left( x + \frac{1}{x} \right)\frac{dx}{1 + x^{2}}} is equal to

A

πlog2\pi\log 2

B

πlog2- \pi\log 2

C

(π/2)log2(\pi ⥂ / ⥂ 2)\log 2

D

(π/2)log2- (\pi ⥂ / ⥂ 2)\log 2

Answer

πlog2\pi\log 2

Explanation

Solution

I=0log(x+1x)11+x2dxI = \int_{0}^{\infty}{\log\left( x + \frac{1}{x} \right)}\frac{1}{1 + x^{2}}dx

Put x=tanθdx=sec2θdθx = \tan\theta \Rightarrow dx = \sec^{2}\theta d\theta

I=0π/2log(tanθ+cotθ)sec2θsec2θdθ\mathbf{\Rightarrow}\mathbf{I =}\int_{\mathbf{0}}^{\mathbf{\pi/2}}{\mathbf{\log}\mathbf{(}\mathbf{\tan}\mathbf{\theta}\mathbf{+}\mathbf{\cot}\mathbf{\theta}}\mathbf{)}\frac{\mathbf{\sec}^{\mathbf{2}}\mathbf{\theta}}{\mathbf{\sec}^{\mathbf{2}}\mathbf{\theta}}\mathbf{d\theta}

I=0π/2log(tanθ+cotθ)dθI = \int_{0}^{\pi/2}{\log(\tan\theta + \cot\theta})d\theta

I=0π/2log(1+tan2θ)tanθdθ\Rightarrow I = \int_{0}^{\pi/2}{\log\frac{(1 + \tan^{2}\theta)}{\tan\theta}d\theta}

⇒ I =20π/2logsecθdθ0π/2logtanθdθ= 2\int_{0}^{\pi/2}{{logsec}\theta d\theta - \int_{0}^{\pi/2}{{logtan}\theta}}d\theta

⇒ I =20π/2logsecθdθ= 2\int_{0}^{\pi/2}{{logsec}\theta d\theta}; {0π/2logtanθ=0}\left\{ \because\int_{0}^{\pi/2}{{logtan}\theta = 0} \right\}

I=20π/2logcosθdθ\Rightarrow I = - 2\int_{0}^{\pi/2}{{logcos}\theta d\theta}

I=2×π2log2I = - 2 \times \frac{- \pi}{2}\log 2, {0π/2logcosθ=π2log2}\left\{ \because\int_{0}^{\pi/2}{{logcos}\theta = - \frac{\pi}{2}\log 2} \right\}

I=πlog2I = \pi\log 2.