Question
Question: \(\int_{0}^{\infty}{\log\left( x + \frac{1}{x} \right)\frac{dx}{1 + x^{2}}}\) is equal to...
∫0∞log(x+x1)1+x2dx is equal to
A
πlog2
B
−πlog2
C
(π⥂/⥂2)log2
D
−(π⥂/⥂2)log2
Answer
πlog2
Explanation
Solution
I=∫0∞log(x+x1)1+x21dx
Put x=tanθ⇒dx=sec2θdθ
⇒I=∫0π/2log(tanθ+cotθ)sec2θsec2θdθ
⇒ I=∫0π/2log(tanθ+cotθ)dθ
⇒I=∫0π/2logtanθ(1+tan2θ)dθ
⇒ I =2∫0π/2logsecθdθ−∫0π/2logtanθdθ
⇒ I =2∫0π/2logsecθdθ; {∵∫0π/2logtanθ=0}
⇒I=−2∫0π/2logcosθdθ
⇒I=−2×2−πlog2, {∵∫0π/2logcosθ=−2πlog2}
⇒ I=πlog2.