Solveeit Logo

Question

Question: \(\int_{0}^{\infty}\left\lbrack \frac{3}{x^{2} + 1} \right\rbrack dx\) is equal to [.] denotes the g...

0[3x2+1]dx\int_{0}^{\infty}\left\lbrack \frac{3}{x^{2} + 1} \right\rbrack dx is equal to [.] denotes the greatest integer

function)

A

2\sqrt{2}

B

2\sqrt{2}+ 1

C

3/2\sqrt{2}

D

Infinite

Answer

3/2\sqrt{2}

Explanation

Solution

Here 0 <3x2+13\frac{3}{x^{2} + 1} \leq 3, 3x2+1=2\frac{3}{x^{2} + 1} = 2

⇒ x = 12\frac{1}{\sqrt{2}} and 3x2+1\frac{3}{x^{2} + 1} = 1 ⇒ x = 2\sqrt{2}

⇒ I =01/22dx\int_{0}^{1/\sqrt{2}}{2dx}+1/221.dx\int_{1/\sqrt{2}}^{\sqrt{2}}{1.dx} + 20dx\int_{\sqrt{2}}^{\infty}{0 ⥄ dx} = 2\sqrt{2}+ 212\sqrt{2} - \frac{1}{\sqrt{2}}

= 2212\sqrt{2} - \frac{1}{\sqrt{2}} =32\frac{3}{\sqrt{2}}