Solveeit Logo

Question

Question: \[\int_{0}^{\infty}{\frac{xdx}{(1 + x)(1 + x^{2})} =}\]...

0xdx(1+x)(1+x2)=\int_{0}^{\infty}{\frac{xdx}{(1 + x)(1 + x^{2})} =}

A

0

B

π/2\pi/2

C

π/4\pi/4

D

1

Answer

π/4\pi/4

Explanation

Solution

0xdx(1+x)(1+x2)=012dx(1+x)+0(12x+12)1+x2dx\int_{0}^{\infty}{\frac{xdx}{(1 + x)(1 + x^{2})} = \int_{0}^{\infty}{\frac{- \frac{1}{2}dx}{(1 + x)} + \int_{0}^{\infty}{\frac{\left( \frac{1}{2}x + \frac{1}{2} \right)}{1 + x^{2}}dx}}}

=[12log(1+x)]0+12×12[log(1+x2)]0+12[tan1x]0= \left\lbrack \frac{- 1}{2}\log(1 + x) \right\rbrack_{0}^{\infty} + \frac{1}{2} \times \frac{1}{2}\lbrack\log(1 + x^{2})\rbrack_{0}^{\infty} + \frac{1}{2}\lbrack\tan^{- 1}x\rbrack_{0}^{\infty}

=0+0+12[π20]=π4= 0 + 0 + \frac{1}{2}\left\lbrack \frac{\pi}{2} - 0 \right\rbrack = \frac{\pi}{4}.