Solveeit Logo

Question

Question: \[\int_{0}^{\infty}{\frac{x^{3}dx}{(x^{2} + 4)^{2}} =}\]...

0x3dx(x2+4)2=\int_{0}^{\infty}{\frac{x^{3}dx}{(x^{2} + 4)^{2}} =}

A

0

B

\infty

C

12\frac{1}{2}

D

None of these

Answer

\infty

Explanation

Solution

0x3dx(x2+4)2=120x22xdx(x2+4)2dx=120t(t+4)2dt\int_{0}^{\infty}{\frac{x^{3}dx}{(x^{2} + 4)^{2}} = \frac{1}{2}}\int_{0}^{\infty}{\frac{x^{2}2xdx}{(x^{2} + 4)^{2}}dx} = \frac{1}{2}\int_{0}^{\infty}{\frac{t}{(t + 4)^{2}}dt},

[Puttingx2=tx^{2} = t]

=120[1t+44(t+4)2]dt=12[log(t+4)+4t+4]0= \frac{1}{2}\int_{0}^{\infty}{\left\lbrack \frac{1}{t + 4} - \frac{4}{(t + 4)^{2}} \right\rbrack dt = \frac{1}{2}\left\lbrack \log(t + 4) + \frac{4}{t + 4} \right\rbrack_{0}^{\infty}}

=12[log+0(log4+1)]== \frac{1}{2}\left\lbrack \log\infty + 0 - (\log 4 + 1) \right\rbrack = \infty.