Solveeit Logo

Question

Question: \[\int_{0}^{\infty}\frac{\log(1 + x^{2})}{1 + x^{2}}dx =\]...

0log(1+x2)1+x2dx=\int_{0}^{\infty}\frac{\log(1 + x^{2})}{1 + x^{2}}dx =

A

πlog12\pi\log\frac{1}{2}

B

πlog2\pi\log 2

C

2πlog122\pi\log\frac{1}{2}

D

2πlog22\pi\log 2

Answer

πlog2\pi\log 2

Explanation

Solution

Let I=0log(1+x2)1+x2dxI = \int_{0}^{\infty}{\frac{\log(1 + x^{2})}{1 + x^{2}}dx}

Put x=tanθdx=sec2θdθ,x = \tan\theta \Rightarrow dx = \sec^{2}\theta d\theta,

\therefore I=0π/2log(secθ)2dθ=20π/2logsecθdθI = \int_{0}^{\pi/2}{\log(\sec\theta)^{2}d\theta = 2\int_{0}^{\pi/2}{{logsec}\theta d\theta}}

=20π/2logcosθdθ=2.π2log12=πlog12=πlog2= - 2\int_{0}^{\pi/2}{{logcos}\theta d\theta = - 2.\frac{\pi}{2}\log\frac{1}{2}} = - \pi\log\frac{1}{2} = \pi\log 2.