Question
Question: \[\int_{0}^{\infty}\frac{\log(1 + x^{2})}{1 + x^{2}}dx =\]...
∫0∞1+x2log(1+x2)dx=
A
πlog21
B
πlog2
C
2πlog21
D
2πlog2
Answer
πlog2
Explanation
Solution
Let I=∫0∞1+x2log(1+x2)dx
Put x=tanθ⇒dx=sec2θdθ,
∴ I=∫0π/2log(secθ)2dθ=2∫0π/2logsecθdθ
=−2∫0π/2logcosθdθ=−2.2πlog21=−πlog21=πlog2.