Solveeit Logo

Question

Question: \[\int_{0}^{\infty}{e^{- 2x}(\sin 2x + \cos 2x)dx =}\]...

0e2x(sin2x+cos2x)dx=\int_{0}^{\infty}{e^{- 2x}(\sin 2x + \cos 2x)dx =}

A

1

B

0

C

12\frac{1}{2}

D

\infty

Answer

12\frac{1}{2}

Explanation

Solution

0e2x(sin2x+cos2x)dx\int_{0}^{\infty}{e^{- 2x}(\sin 2x + \cos 2x)dx}

=[excos2x2]00(2e2x)(cos2x2) dx+0e2xcos2xdx=12= \left\lbrack - e^{- x}\frac{\cos 2x}{2} \right\rbrack_{0}^{\infty} - \int_{0}^{\infty}\left( - 2e^{- 2x} \right)\left( \frac{- \cos 2x}{2} \right)\ dx + \int_{0}^{\infty}{e^{- 2x}\cos 2xdx} = \frac{1}{2}.