Question
Question: $\int_{0}^{\infty} (\frac{ln \ x}{x^{2} + 2x + 4}) dx$...
∫0∞(x2+2x+4ln x)dx

Answer
33πln2
Explanation
Solution
The integral I=∫0∞x2+2x+4lnxdx is solved using a property for integrals of the form ∫0∞x2+ax+blnxdx.
-
A substitution x=b/t (here x=4/t) is applied to the integral. This transforms the integral into I=∫0∞x2+ax+blnb−lnxdx.
-
Adding the original integral and the transformed integral yields 2I=∫0∞x2+ax+blnbdx.
-
This simplifies to I=2lnb∫0∞x2+ax+b1dx.
-
For the given problem, a=2,b=4. So I=2ln4∫0∞x2+2x+41dx=ln2∫0∞(x+1)2+31dx.
-
The remaining integral is evaluated using a standard arctangent form after a simple substitution u=x+1. ∫1∞u2+(3)21du=[31arctan(3u)]1∞=31(2π−6π)=313π=33π.
-
Multiplying by ln2 gives the final result: 33πln2.