Solveeit Logo

Question

Question: $\int_{0}^{\infty} (\frac{ln \ x}{x^{2} + 2x + 4}) dx$...

0(ln xx2+2x+4)dx\int_{0}^{\infty} (\frac{ln \ x}{x^{2} + 2x + 4}) dx

Answer

πln233\frac{\pi \ln 2}{3\sqrt{3}}

Explanation

Solution

The integral I=0lnxx2+2x+4dxI = \int_{0}^{\infty} \frac{\ln x}{x^{2} + 2x + 4} dx is solved using a property for integrals of the form 0lnxx2+ax+bdx\int_{0}^{\infty} \frac{\ln x}{x^2+ax+b} dx.

  1. A substitution x=b/tx = b/t (here x=4/tx=4/t) is applied to the integral. This transforms the integral into I=0lnblnxx2+ax+bdxI = \int_{0}^{\infty} \frac{\ln b - \ln x}{x^2+ax+b} dx.

  2. Adding the original integral and the transformed integral yields 2I=0lnbx2+ax+bdx2I = \int_{0}^{\infty} \frac{\ln b}{x^2+ax+b} dx.

  3. This simplifies to I=lnb201x2+ax+bdxI = \frac{\ln b}{2} \int_{0}^{\infty} \frac{1}{x^2+ax+b} dx.

  4. For the given problem, a=2,b=4a=2, b=4. So I=ln4201x2+2x+4dx=ln201(x+1)2+3dxI = \frac{\ln 4}{2} \int_{0}^{\infty} \frac{1}{x^2+2x+4} dx = \ln 2 \int_{0}^{\infty} \frac{1}{(x+1)^2+3} dx.

  5. The remaining integral is evaluated using a standard arctangent form after a simple substitution u=x+1u=x+1. 11u2+(3)2du=[13arctan(u3)]1=13(π2π6)=13π3=π33\int_{1}^{\infty} \frac{1}{u^2+(\sqrt{3})^2} du = \left[ \frac{1}{\sqrt{3}} \arctan\left(\frac{u}{\sqrt{3}}\right) \right]_{1}^{\infty} = \frac{1}{\sqrt{3}} \left(\frac{\pi}{2} - \frac{\pi}{6}\right) = \frac{1}{\sqrt{3}} \frac{\pi}{3} = \frac{\pi}{3\sqrt{3}}.

  6. Multiplying by ln2\ln 2 gives the final result: πln233\frac{\pi \ln 2}{3\sqrt{3}}.