Solveeit Logo

Question

Question: $\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx$...

0π2sinxsinx+cosxdx\int_{0}^{\frac{\pi}{2}} \frac{\sqrt{\sin x}}{\sqrt{\sin x} + \sqrt{\cos x}} dx

Answer

π4\frac{\pi}{4}

Explanation

Solution

  1. Substitute x=π2ux = \frac{\pi}{2} - u to obtain an equivalent integral.

  2. Add the original integral and its substitution form to obtain 2I=π22I = \frac{\pi}{2}.

  3. Solve for II to get I=π4I = \frac{\pi}{4}.