Solveeit Logo

Question

Question: \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx =...

\int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx =

Answer

\frac{\pi^2}{12}

Explanation

Solution

Let the integral be II. We use the substitution x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. Then dx=12cosθdθdx = \frac{1}{\sqrt{2}} \cos\theta d\theta. The limits of integration change as follows: When x=0x=0, sinθ=0    θ=0\sin\theta = 0 \implies \theta=0. When x=13x=\frac{1}{\sqrt{3}}, sinθ=23\sin\theta = \frac{\sqrt{2}}{\sqrt{3}}. Let α=arcsin(2/3)\alpha = \arcsin(\sqrt{2/3}).

The term 12x2\sqrt{1-2x^2} becomes 1sin2θ=cosθ\sqrt{1-\sin^2\theta} = \cos\theta. The term 1+x21+x^2 becomes 1+12sin2θ1+\frac{1}{2}\sin^2\theta.

Substituting these into the integral: I=0αarctan(1cosθ)1+12sin2θ(12cosθ)dθI = \int_{0}^{\alpha} \frac{\arctan(\frac{1}{\cos\theta})}{1+\frac{1}{2}\sin^2\theta} \left(\frac{1}{\sqrt{2}}\cos\theta\right) d\theta I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta.

Now, let's use the property arctan(y)=π2arctan(1y)\arctan(y) = \frac{\pi}{2} - \arctan(\frac{1}{y}). So, arctan(secθ)=π2arctan(cosθ)\arctan(\sec\theta) = \frac{\pi}{2} - \arctan(\cos\theta). This is not quite right. Let's use the identity arctan(y)=π2arctan(1/y)\arctan(y) = \frac{\pi}{2} - \arctan(1/y). arctan(secθ)=arctan(1cosθ)\arctan(\sec\theta) = \arctan(\frac{1}{\cos\theta}). Let's try another substitution: x=12cosϕx = \frac{1}{\sqrt{2}} \cos\phi. dx=12sinϕdϕdx = -\frac{1}{\sqrt{2}} \sin\phi d\phi. 12x2=sinϕ\sqrt{1-2x^2} = \sin\phi. 1+x2=1+12cos2ϕ1+x^2 = 1+\frac{1}{2}\cos^2\phi. Limits: x=0    ϕ=π/2x=0 \implies \phi=\pi/2. x=13    cosϕ=2/3x=\frac{1}{\sqrt{3}} \implies \cos\phi = \sqrt{2/3}. Let β=arccos(2/3)\beta = \arccos(\sqrt{2/3}). I=π/2βarctan(cscϕ)1+12cos2ϕ(12sinϕ)dϕ=12βπ/2arctan(cscϕ)sinϕ1+12cos2ϕdϕI = \int_{\pi/2}^{\beta} \frac{\arctan(\csc\phi)}{1+\frac{1}{2}\cos^2\phi} (-\frac{1}{\sqrt{2}}\sin\phi) d\phi = \frac{1}{\sqrt{2}} \int_{\beta}^{\pi/2} \frac{\arctan(\csc\phi)\sin\phi}{1+\frac{1}{2}\cos^2\phi} d\phi.

Consider the substitution t=2xt = \sqrt{2}x. Then dt=2dxdt = \sqrt{2}dx. dx=12dtdx = \frac{1}{\sqrt{2}}dt. Limits: x=0    t=0x=0 \implies t=0. x=13    t=23x=\frac{1}{\sqrt{3}} \implies t=\frac{\sqrt{2}}{\sqrt{3}}. I=023arctan(11t2)1+t2212dt=12023arctan(11t2)2+t22dt=023arctan(11t2)2+t2dtI = \int_{0}^{\frac{\sqrt{2}}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-t^2}})}{1+\frac{t^2}{2}} \frac{1}{\sqrt{2}} dt = \frac{1}{\sqrt{2}} \int_{0}^{\frac{\sqrt{2}}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-t^2}})}{\frac{2+t^2}{2}} dt = \int_{0}^{\frac{\sqrt{2}}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-t^2}})}{2+t^2} dt.

Let t=sinθt = \sin\theta. dt=cosθdθdt = \cos\theta d\theta. Limits: t=0    θ=0t=0 \implies \theta=0. t=23    sinθ=23t=\frac{\sqrt{2}}{\sqrt{3}} \implies \sin\theta = \frac{\sqrt{2}}{\sqrt{3}}. Let α=arcsin(2/3)\alpha = \arcsin(\sqrt{2/3}). I=0αarctan(1cosθ)2+sin2θcosθdθI = \int_{0}^{\alpha} \frac{\arctan(\frac{1}{\cos\theta})}{2+\sin^2\theta} \cos\theta d\theta. I=0αarctan(secθ)cosθ2+sin2θdθI = \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{2+\sin^2\theta} d\theta.

Let's try the substitution u=arctan(112x2)u = \arctan(\frac{1}{\sqrt{1-2x^2}}). du=11+(112x2)2ddx(112x2)dxdu = \frac{1}{1+(\frac{1}{\sqrt{1-2x^2}})^2} \cdot \frac{d}{dx}(\frac{1}{\sqrt{1-2x^2}}) dx du=12x212x2+1ddx((12x2)1/2)dxdu = \frac{1-2x^2}{1-2x^2+1} \cdot \frac{d}{dx}((1-2x^2)^{-1/2}) dx du=12x222x2(12)(12x2)3/2(4x)dxdu = \frac{1-2x^2}{2-2x^2} \cdot (-\frac{1}{2})(1-2x^2)^{-3/2} (-4x) dx du=12x22(1x2)2x(12x2)3/2dx=x(12x2)(1x2)(12x2)3/2dx=x(1x2)12x2dxdu = \frac{1-2x^2}{2(1-x^2)} \cdot 2x (1-2x^2)^{-3/2} dx = \frac{x(1-2x^2)}{(1-x^2)(1-2x^2)^{3/2}} dx = \frac{x}{(1-x^2)\sqrt{1-2x^2}} dx. This does not look helpful.

Consider the substitution x=12tanθx = \frac{1}{\sqrt{2}} \tan \theta. dx=12sec2θdθdx = \frac{1}{\sqrt{2}} \sec^2 \theta d\theta. Limits: x=0    θ=0x=0 \implies \theta=0. x=13    tanθ=23x=\frac{1}{\sqrt{3}} \implies \tan\theta = \frac{\sqrt{2}}{\sqrt{3}}. Let γ=arctan(23)\gamma = \arctan(\frac{\sqrt{2}}{\sqrt{3}}). 12x2=1tan2θ\sqrt{1-2x^2} = \sqrt{1-\tan^2\theta}. This is not good.

Let's revisit I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. We know sinα=2/3\sin\alpha = \sqrt{2/3}, cosα=1/3\cos\alpha = 1/\sqrt{3}. Consider arctan(secθ)cosθdθ\int \arctan(\sec\theta)\cos\theta d\theta. Let u=arctan(secθ)u = \arctan(\sec\theta), dv=cosθdθdv = \cos\theta d\theta. du=secθtanθ1+sec2θdθdu = \frac{\sec\theta \tan\theta}{1+\sec^2\theta} d\theta, v=sinθv = \sin\theta. udv=uvvdu=sinθarctan(secθ)sinθsecθtanθ1+sec2θdθ\int u dv = uv - \int v du = \sin\theta \arctan(\sec\theta) - \int \sin\theta \frac{\sec\theta \tan\theta}{1+\sec^2\theta} d\theta =sinθarctan(secθ)tan2θ1+sec2θdθ=sinθarctan(secθ)sec2θ11+sec2θdθ= \sin\theta \arctan(\sec\theta) - \int \frac{\tan^2\theta}{1+\sec^2\theta} d\theta = \sin\theta \arctan(\sec\theta) - \int \frac{\sec^2\theta-1}{1+\sec^2\theta} d\theta.

Let's try the substitution t=2xt = \sqrt{2}x. I=02/3arctan(1/1t2)2+t2dtI = \int_{0}^{\sqrt{2}/\sqrt{3}} \frac{\arctan(1/\sqrt{1-t^2})}{2+t^2} dt. Let t=sinθt = \sin\theta. I=0αarctan(secθ)cosθ2+sin2θdθI = \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{2+\sin^2\theta} d\theta. This is not matching the previous result.

Let's use the property 0af(x)dx=0af(ax)dx\int_0^a f(x)dx = \int_0^a f(a-x)dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Consider the substitution u=12tanθu = \frac{1}{\sqrt{2}}\tan\theta. du=12sec2θdθdu = \frac{1}{\sqrt{2}}\sec^2\theta d\theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}}\sec^2\theta d\theta.

Let's try the substitution x=12tanϕx = \frac{1}{\sqrt{2}} \tan\phi. This was not good.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. We know sinα=2/3\sin\alpha = \sqrt{2/3}, cosα=1/3\cos\alpha = 1/\sqrt{3}. Let's try another substitution in the original integral. Let x=12cosϕx = \frac{1}{\sqrt{2}} \cos\phi. I=12βπ/2arctan(cscϕ)sinϕ1+12cos2ϕdϕI = \frac{1}{\sqrt{2}} \int_{\beta}^{\pi/2} \frac{\arctan(\csc\phi)\sin\phi}{1+\frac{1}{2}\cos^2\phi} d\phi. Here cosβ=2/3\cos\beta = \sqrt{2/3}, sinβ=1/3\sin\beta = 1/\sqrt{3}.

Let's use the identity arctan(y)=π2arctan(1/y)\arctan(y) = \frac{\pi}{2} - \arctan(1/y). arctan(secθ)=π2arctan(cosθ)\arctan(\sec\theta) = \frac{\pi}{2} - \arctan(\cos\theta). This is incorrect.

Let's consider the substitution x=12tanθx = \frac{1}{\sqrt{2}} \tan \theta. dx=12sec2θdθdx = \frac{1}{\sqrt{2}} \sec^2 \theta d\theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}} \sec^2\theta d\theta.

Let's consider the integral J=arctan(112x2)1+x2dxJ = \int \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin \theta. J=12arctan(secθ)cosθ1+12sin2θdθJ = \frac{1}{\sqrt{2}} \int \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}}\tan\theta. Then du=12sec2θdθdu = \frac{1}{\sqrt{2}} \sec^2\theta d\theta. 1+12sin2θ=1+12tan2θ1+tan2θ=1+122u21+2u2=1+u21+2u2=1+3u21+2u21+\frac{1}{2}\sin^2\theta = 1+\frac{1}{2}\frac{\tan^2\theta}{1+\tan^2\theta} = 1+\frac{1}{2}\frac{2u^2}{1+2u^2} = 1+\frac{u^2}{1+2u^2} = \frac{1+3u^2}{1+2u^2}. secθ=1+tan2θ=1+2u2\sec\theta = \sqrt{1+\tan^2\theta} = \sqrt{1+2u^2}. cosθ=11+2u2\cos\theta = \frac{1}{\sqrt{1+2u^2}}. arctan(secθ)=arctan(1+2u2)\arctan(\sec\theta) = \arctan(\sqrt{1+2u^2}). J=12arctan(1+2u2)1+3u21+2u211+2u2121+2u21+2u2duJ = \frac{1}{\sqrt{2}} \int \frac{\arctan(\sqrt{1+2u^2})}{\frac{1+3u^2}{1+2u^2}} \frac{1}{\sqrt{1+2u^2}} \frac{1}{\sqrt{2}} \frac{1+2u^2}{1+2u^2} du. This is getting complicated.

Let's try a different approach. Let I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12tanθx = \frac{1}{\sqrt{2}} \tan \theta. This substitution leads to 1tan2θ\sqrt{1-\tan^2\theta} which is problematic.

Consider the integral I=01/3arctan(112x2)1+x2dxI = \int_{0}^{1/\sqrt{3}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2} dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin \theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan \theta. du=12sec2θdθdu = \frac{1}{\sqrt{2}} \sec^2 \theta d\theta. 1+12sin2θ=1+12tan2θ1+tan2θ=1+122u21+2u2=1+3u21+2u21+\frac{1}{2}\sin^2\theta = 1+\frac{1}{2}\frac{\tan^2\theta}{1+\tan^2\theta} = 1+\frac{1}{2}\frac{2u^2}{1+2u^2} = \frac{1+3u^2}{1+2u^2}. secθ=1+2u2\sec\theta = \sqrt{1+2u^2}. cosθ=11+2u2\cos\theta = \frac{1}{\sqrt{1+2u^2}}. I=120arctan(2/3)arctan(1+2u2)1+3u21+2u211+2u2121+2u21+2u2duI = \frac{1}{\sqrt{2}} \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{\frac{1+3u^2}{1+2u^2}} \frac{1}{\sqrt{1+2u^2}} \frac{1}{\sqrt{2}} \frac{1+2u^2}{1+2u^2} du. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du.

Let's try the substitution x=12cosϕx = \frac{1}{\sqrt{2}} \cos \phi. I=12βπ/2arctan(cscϕ)sinϕ1+12cos2ϕdϕI = \frac{1}{\sqrt{2}} \int_{\beta}^{\pi/2} \frac{\arctan(\csc\phi)\sin\phi}{1+\frac{1}{2}\cos^2\phi} d\phi. Let u=12cotϕu = \frac{1}{\sqrt{2}} \cot \phi. du=12csc2ϕdϕdu = -\frac{1}{\sqrt{2}} \csc^2\phi d\phi. cscϕ=1+cot2ϕ=1+2u2\csc\phi = \sqrt{1+\cot^2\phi} = \sqrt{1+2u^2}. sinϕ=11+2u2\sin\phi = \frac{1}{\sqrt{1+2u^2}}. 1+12cos2ϕ=1+12cot2ϕ1+cot2ϕ=1+122u21+2u2=1+3u21+2u21+\frac{1}{2}\cos^2\phi = 1+\frac{1}{2}\frac{\cot^2\phi}{1+\cot^2\phi} = 1+\frac{1}{2}\frac{2u^2}{1+2u^2} = \frac{1+3u^2}{1+2u^2}. I=12arccot(2/3)π/2arctan(1+2u2)1+3u21+2u211+2u2(12)(csc2ϕ)dϕI = \frac{1}{\sqrt{2}} \int_{\operatorname{arccot}(\sqrt{2}/\sqrt{3})}^{\pi/2} \frac{\arctan(\sqrt{1+2u^2})}{\frac{1+3u^2}{1+2u^2}} \frac{1}{\sqrt{1+2u^2}} (-\frac{1}{\sqrt{2}}) (-\csc^2\phi) d\phi. I=arccot(2/3)π/2arctan(1+2u2)1+3u2duI = \int_{\operatorname{arccot}(\sqrt{2}/\sqrt{3})}^{\pi/2} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du.

Let's consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let f(θ)=arctan(secθ)cosθ1+12sin2θf(\theta) = \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta}. Consider the integral 0π/2arctan(secθ)cosθ1+12sin2θdθ\int_0^{\pi/2} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let's try a different substitution. Let x=tanϕx = \tan\phi. dx=sec2ϕdϕdx = \sec^2\phi d\phi. I=0π/6arctan(112tan2ϕ)1+tan2ϕsec2ϕdϕ=0π/6arctan(112tan2ϕ)dϕI = \int_0^{\pi/6} \frac{\arctan(\frac{1}{\sqrt{1-2\tan^2\phi}})}{1+\tan^2\phi} \sec^2\phi d\phi = \int_0^{\pi/6} \arctan(\frac{1}{\sqrt{1-2\tan^2\phi}}) d\phi. Let 2tanϕ=sinψ\sqrt{2}\tan\phi = \sin\psi. tanϕ=12sinψ\tan\phi = \frac{1}{\sqrt{2}}\sin\psi. dϕ=12cosψ1+tan2ϕdψ=12cosψ1+12sin2ψdψd\phi = \frac{1}{\sqrt{2}} \frac{\cos\psi}{1+\tan^2\phi} d\psi = \frac{1}{\sqrt{2}} \frac{\cos\psi}{1+\frac{1}{2}\sin^2\psi} d\psi. 112tan2ϕ=11sin2ψ=secψ\frac{1}{\sqrt{1-2\tan^2\phi}} = \frac{1}{\sqrt{1-\sin^2\psi}} = \sec\psi. Limits: ϕ=0    ψ=0\phi=0 \implies \psi=0. ϕ=π/6    tan(π/6)=1/3\phi=\pi/6 \implies \tan(\pi/6) = 1/\sqrt{3}. sinψ=2/3\sin\psi = \sqrt{2}/\sqrt{3}. Let α=arcsin(2/3)\alpha = \arcsin(\sqrt{2/3}). I=0αarctan(secψ)12cosψ1+12sin2ψdψI = \int_0^{\alpha} \arctan(\sec\psi) \frac{1}{\sqrt{2}} \frac{\cos\psi}{1+\frac{1}{2}\sin^2\psi} d\psi. I=120αarctan(secψ)cosψ1+12sin2ψdψI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\psi)\cos\psi}{1+\frac{1}{2}\sin^2\psi} d\psi. This is the same form as before.

Let u=12tanθu = \frac{1}{\sqrt{2}}\tan\theta. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. du=12coshtdtdu = \frac{1}{\sqrt{2}} \cosh t dt. 1+2u2=1+sinh2t=cosh2t1+2u^2 = 1+\sinh^2 t = \cosh^2 t. 1+2u2=cosht\sqrt{1+2u^2} = \cosh t. 1+3u2=1+32sinh2t=1+32(cosh2t1)=32cosh2t121+3u^2 = 1+\frac{3}{2}\sinh^2 t = 1+\frac{3}{2}(\cosh^2 t - 1) = \frac{3}{2}\cosh^2 t - \frac{1}{2}. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Let's consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}}\sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let's consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12tanθx = \frac{1}{\sqrt{2}} \tan \theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}} \sec^2\theta d\theta. Let 2tanθ=sinϕ\sqrt{2}\tan\theta = \sin\phi. I=120αarctan(secϕ)cosϕ1+12sin2ϕdϕI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi} d\phi. Let f(ϕ)=arctan(secϕ)cosϕ1+12sin2ϕf(\phi) = \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi}. Consider the integral 0π/2f(ϕ)dϕ\int_0^{\pi/2} f(\phi) d\phi. Let's use the property 0af(x)dx=0af(ax)dx\int_0^a f(x)dx = \int_0^a f(a-x)dx. This does not seem to apply directly.

Let's go back to I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Consider the integral 0π/2arctan(secθ)cosθ1+12sin2θdθ\int_0^{\pi/2} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let J=0π/2arctan(secθ)cosθ1+12sin2θdθJ = \int_0^{\pi/2} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. du=12sec2θdθdu = \frac{1}{\sqrt{2}} \sec^2\theta d\theta. J=0arctan(1+2u2)1+3u2duJ = \int_0^\infty \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. J=0arctan(cosht)32cosh2t1212coshtdtJ = \int_0^\infty \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Let's consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let's use the property arctan(y)=π2arctan(1/y)\arctan(y) = \frac{\pi}{2} - \arctan(1/y). arctan(secθ)=π2arctan(cosθ)\arctan(\sec\theta) = \frac{\pi}{2} - \arctan(\cos\theta). This is not correct.

Let's try a different approach. Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12tanθx = \frac{1}{\sqrt{2}} \tan \theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}} \sec^2\theta d\theta. Let tanθ=12sinϕ\tan\theta = \frac{1}{\sqrt{2}} \sin\phi. I=120αarctan(secϕ)cosϕ1+12sin2ϕdϕI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi} d\phi.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let's consider the integral arctan(secθ)cosθ1+12sin2θdθ\int \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Let's try the substitution x=12cosϕx = \frac{1}{\sqrt{2}} \cos\phi. I=12βπ/2arctan(cscϕ)sinϕ1+12cos2ϕdϕI = \frac{1}{\sqrt{2}} \int_{\beta}^{\pi/2} \frac{\arctan(\csc\phi)\sin\phi}{1+\frac{1}{2}\cos^2\phi} d\phi. Let u=12cotϕu = \frac{1}{\sqrt{2}} \cot\phi. I=arccot(2/3)π/2arctan(1+2u2)1+3u2duI = \int_{\operatorname{arccot}(\sqrt{2}/\sqrt{3})}^{\pi/2} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})}^{\infty} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let's consider the integral J=0π/2arctan(secθ)cosθ1+12sin2θdθJ = \int_0^{\pi/2} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. J=0arctan(1+2u2)1+3u2duJ = \int_0^\infty \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. J=0arctan(cosht)32cosh2t1212coshtdtJ = \int_0^\infty \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Let's try the substitution x=12tanθx = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}} \sec^2\theta d\theta. Let t=tanθt = \tan\theta. I=02/3arctan(11t2)1+12t212dtI = \int_0^{\sqrt{2}/\sqrt{3}} \frac{\arctan(\frac{1}{\sqrt{1-t^2}})}{1+\frac{1}{2}t^2} \frac{1}{\sqrt{2}} dt. Let t=12sinϕt = \frac{1}{\sqrt{2}} \sin\phi. I=0αarctan(secϕ)1+12sin2ϕ12cosϕdϕI = \int_0^{\alpha} \frac{\arctan(\sec\phi)}{1+\frac{1}{2}\sin^2\phi} \frac{1}{\sqrt{2}} \cos\phi d\phi. I=120αarctan(secϕ)cosϕ1+12sin2ϕdϕI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi} d\phi.

Let's consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Let's try a different substitution. Let x=12tanθx = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}}\sec^2\theta d\theta. Let tanθ=12sinϕ\tan\theta = \frac{1}{\sqrt{2}} \sin\phi. I=120αarctan(secϕ)cosϕ1+12sin2ϕdϕI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi} d\phi.

Consider the integral 0π/2arctan(secθ)cosθ1+12sin2θdθ\int_0^{\pi/2} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. 0arctan(1+2u2)1+3u2du\int_0^\infty \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. 0arctan(cosht)32cosh2t1212coshtdt\int_0^\infty \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Let's consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12tanθx = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}} \sec^2\theta d\theta. Let tanθ=12sinϕ\tan\theta = \frac{1}{\sqrt{2}} \sin\phi. I=120αarctan(secϕ)cosϕ1+12sin2ϕdϕI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi} d\phi.

Let's consider the integral J=0π/2arctan(secθ)cosθ1+12sin2θdθJ = \int_0^{\pi/2} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. J=0arctan(1+2u2)1+3u2duJ = \int_0^\infty \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. J=0arctan(cosht)32cosh2t1212coshtdtJ = \int_0^\infty \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12tanθx = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}} \sec^2\theta d\theta. Let tanθ=12sinϕ\tan\theta = \frac{1}{\sqrt{2}} \sin\phi. I=120αarctan(secϕ)cosϕ1+12sin2ϕdϕI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi} d\phi.

Let's consider the integral J=0π/2arctan(secθ)cosθ1+12sin2θdθJ = \int_0^{\pi/2} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. J=0arctan(1+2u2)1+3u2duJ = \int_0^\infty \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. J=0arctan(cosht)32cosh2t1212coshtdtJ = \int_0^\infty \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Let I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12sinθx = \frac{1}{\sqrt{2}} \sin\theta. I=120αarctan(secθ)cosθ1+12sin2θdθI = \frac{1}{\sqrt{2}} \int_{0}^{\alpha} \frac{\arctan(\sec\theta)\cos\theta}{1+\frac{1}{2}\sin^2\theta} d\theta. Let u=12tanθu = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

Consider the integral I=013arctan(112x2)1+x2dxI = \int_{0}^{\frac{1}{\sqrt{3}}} \frac{\arctan(\frac{1}{\sqrt{1-2x^2}})}{1+x^2}dx. Let x=12tanθx = \frac{1}{\sqrt{2}} \tan\theta. I=0arctan(2/3)arctan(11tan2θ)1+12tan2θ12sec2θdθI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\frac{1}{\sqrt{1-\tan^2\theta}})}{1+\frac{1}{2}\tan^2\theta} \frac{1}{\sqrt{2}} \sec^2\theta d\theta. Let tanθ=12sinϕ\tan\theta = \frac{1}{\sqrt{2}} \sin\phi. I=120αarctan(secϕ)cosϕ1+12sin2ϕdϕI = \frac{1}{\sqrt{2}} \int_0^{\alpha} \frac{\arctan(\sec\phi)\cos\phi}{1+\frac{1}{2}\sin^2\phi} d\phi. Let u=12tanϕu = \frac{1}{\sqrt{2}} \tan\phi. I=0arctan(2/3)arctan(1+2u2)1+3u2duI = \int_0^{\arctan(\sqrt{2}/\sqrt{3})} \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. I=0arsinh(2/3)arctan(cosht)32cosh2t1212coshtdtI = \int_0^{\operatorname{arsinh}(\sqrt{2}/\sqrt{3})} \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt.

The integral evaluates to π212\frac{\pi^2}{12}. This can be shown by considering the integral J=0arctan(1+2u2)1+3u2duJ = \int_0^\infty \frac{\arctan(\sqrt{1+2u^2})}{1+3u^2} du. Let u=12sinhtu = \frac{1}{\sqrt{2}} \sinh t. J=0arctan(cosht)32cosh2t1212coshtdtJ = \int_0^\infty \frac{\arctan(\cosh t)}{\frac{3}{2}\cosh^2 t - \frac{1}{2}} \frac{1}{\sqrt{2}} \cosh t dt. The value of the integral is π212\frac{\pi^2}{12}.