Question
Question: \[\int_{0}^{b - c}{f^{''}(x + a)dx =}\]...
∫0b−cf′′(x+a)dx=
A
f′(a)−f′(b)
B
f′(b−c+a)−f′(a)
C
f′(b+c−a)+f′(a)
D
None of these
Answer
f′(b−c+a)−f′(a)
Explanation
Solution
∫0b−cf"(x+a)dx=[f′(x+a)]0b−c=f′(b−c+a)−f′(a).
∫0b−cf′′(x+a)dx=
f′(a)−f′(b)
f′(b−c+a)−f′(a)
f′(b+c−a)+f′(a)
None of these
f′(b−c+a)−f′(a)
∫0b−cf"(x+a)dx=[f′(x+a)]0b−c=f′(b−c+a)−f′(a).