Solveeit Logo

Question

Question: \[\int_{0}^{b - c}{f^{''}(x + a)dx =}\]...

0bcf(x+a)dx=\int_{0}^{b - c}{f^{''}(x + a)dx =}

A

f(a)f(b)f^{'}(a) - f^{'}(b)

B

f(bc+a)f(a)f^{'}(b - c + a) - f^{'}(a)

C

f(b+ca)+f(a)f^{'}(b + c - a) + f^{'}(a)

D

None of these

Answer

f(bc+a)f(a)f^{'}(b - c + a) - f^{'}(a)

Explanation

Solution

0bcf"(x+a)dx=[f(x+a)]0bc=f(bc+a)f(a)\int_{0}^{b - c}{f"(x + a)dx} = \lbrack f'(x + a)\rbrack_{0}^{b - c} = f'(b - c + a) - f'(a).