Solveeit Logo

Question

Question: \[\int_{0}^{a}{x^{4}\sqrt{a^{2} - x^{2}}}dx =\]...

0ax4a2x2dx=\int_{0}^{a}{x^{4}\sqrt{a^{2} - x^{2}}}dx =

A

π32\frac{\pi}{32}

B

π32a6\frac{\pi}{32}a^{6}

C

π16a6\frac{\pi}{16}a^{6}

D

π8a6\frac{\pi}{8}a^{6}

Answer

π32a6\frac{\pi}{32}a^{6}

Explanation

Solution

Put x=asinθdx=acosθdθx = a\sin\theta \Rightarrow dx = a\cos\theta d\theta

Now 0ax4a2x2dx=a60π/2sin4θcosθcosθdθ\int_{0}^{a}{x^{4}\sqrt{a^{2} - x^{2}}}dx = a^{6}\int_{0}^{\pi/2}{\sin^{4}\theta\cos\theta\cos\theta d\theta}

=a60π/2sin4θcos2θdθ=a6Γ(52).Γ(32)2Γ4=π32a6= a^{6}\int_{0}^{\pi/2}{\sin^{4}\theta\cos^{2}\theta d\theta} = a^{6}\frac{\Gamma\left( \frac{5}{2} \right).\Gamma\left( \frac{3}{2} \right)}{2\Gamma 4} = \frac{\pi}{32}a^{6},

(Using gamma function).