Solveeit Logo

Question

Question: \[\int_{0}^{a}{x(2ax - x^{2})^{\frac{3}{2}}dx =}\]...

0ax(2axx2)32dx=\int_{0}^{a}{x(2ax - x^{2})^{\frac{3}{2}}dx =}

A

a5[3π161]a^{5}\left\lbrack \frac{3\pi}{16} - 1 \right\rbrack

B

a5[3π16+1]a^{5}\left\lbrack \frac{3\pi}{16} + 1 \right\rbrack

C

a5[3π1615]a^{5}\left\lbrack \frac{3\pi}{16} - \frac{1}{5} \right\rbrack

D

None of these

Answer

a5[3π1615]a^{5}\left\lbrack \frac{3\pi}{16} - \frac{1}{5} \right\rbrack

Explanation

Solution

Put x=a(1cos2θ)dx=2asin2θdθx = a(1 - \cos 2\theta) \Rightarrow dx = 2a\sin 2\theta d\theta

Therefore, 0ax(2axx2)3/2dx\int_{0}^{a}{x(2ax - x^{2})^{3/2}dx}

=0π/42a5(1cos2θ)sin42θdθ= \int_{0}^{\pi/4}{2a^{5}(1 - \cos 2\theta)\sin^{4}2\theta d\theta}

Now again, put 2θ=φ2\theta = \varphi

=a5[0π/2sin4φdφ0π/2sin4φcosφdφ]=a5[3π1615]= a^{5}\left\lbrack \int_{0}^{\pi/2}{\sin^{4}\varphi d\varphi} - \int_{0}^{\pi/2}{\sin^{4}\varphi\cos\varphi d\varphi} \right\rbrack = a^{5}\left\lbrack \frac{3\pi}{16} - \frac{1}{5} \right\rbrack.