Solveeit Logo

Question

Question: $\int_0^4 |2x-5| dx =$...

042x5dx=\int_0^4 |2x-5| dx =

Answer

172\frac{17}{2}

Explanation

Solution

  1. Identify the critical point:
    Solve 2x5=02x - 5 = 0 to get x=52=2.5x = \frac{5}{2} = 2.5.

  2. Split the integral:

    042x5dx=02.52x5dx+2.542x5dx.\int_{0}^{4} |2x-5|\,dx = \int_{0}^{2.5} |2x-5|\,dx + \int_{2.5}^{4} |2x-5|\,dx.
    • For x[0,2.5]x \in [0, 2.5], 2x502x-5 \le 0 so 2x5=52x|2x-5| = 5-2x.
    • For x[2.5,4]x \in [2.5, 4], 2x502x-5 \ge 0 so 2x5=2x5|2x-5| = 2x-5.
  3. Evaluate each integral:

    • First integral:

      02.5(52x)dx=[5xx2]02.5=(5(2.5)(2.5)2)0=12.56.25=6.25.\int_{0}^{2.5} (5-2x) dx = \left[5x - x^2\right]_{0}^{2.5} = \Big(5(2.5) - (2.5)^2\Big) - 0 = 12.5 - 6.25 = 6.25.
    • Second integral:

      2.54(2x5)dx=[x25x]2.54=((1620))((6.2512.5))=(4)(6.25)=2.25.\int_{2.5}^{4} (2x-5) dx = \left[x^2-5x\right]_{2.5}^{4} = \Big((16-20)\Big) - \Big((6.25-12.5)\Big) = (-4) - (-6.25) = 2.25.
  4. Sum the results:

    6.25+2.25=8.5=172.6.25 + 2.25 = 8.5 = \frac{17}{2}.