Question
Question: $\int_0^4 |2x-5| dx =$...
∫04∣2x−5∣dx=

Answer
217
Explanation
Solution
-
Identify the critical point:
Solve 2x−5=0 to get x=25=2.5. -
Split the integral:
∫04∣2x−5∣dx=∫02.5∣2x−5∣dx+∫2.54∣2x−5∣dx.- For x∈[0,2.5], 2x−5≤0 so ∣2x−5∣=5−2x.
- For x∈[2.5,4], 2x−5≥0 so ∣2x−5∣=2x−5.
-
Evaluate each integral:
-
First integral:
∫02.5(5−2x)dx=[5x−x2]02.5=(5(2.5)−(2.5)2)−0=12.5−6.25=6.25. -
Second integral:
∫2.54(2x−5)dx=[x2−5x]2.54=((16−20))−((6.25−12.5))=(−4)−(−6.25)=2.25.
-
-
Sum the results:
6.25+2.25=8.5=217.