Solveeit Logo

Question

Question: $\int_0^3 \{x\} dx$...

03{x}dx\int_0^3 \{x\} dx

Answer

32\frac{3}{2}

Explanation

Solution

The fractional part function {x}\{x\} is equal to xxx - \lfloor x \rfloor. The integral 03{x}dx\int_0^3 \{x\} dx can be evaluated by splitting the interval [0,3][0, 3] into subintervals where x\lfloor x \rfloor is constant. 03{x}dx=01{x}dx+12{x}dx+23{x}dx\int_0^3 \{x\} dx = \int_0^1 \{x\} dx + \int_1^2 \{x\} dx + \int_2^3 \{x\} dx For x[0,1)x \in [0, 1), {x}=x\{x\} = x. For x[1,2)x \in [1, 2), {x}=x1\{x\} = x-1. For x[2,3)x \in [2, 3), {x}=x2\{x\} = x-2. Substituting these into the integral: 01xdx+12(x1)dx+23(x2)dx\int_0^1 x dx + \int_1^2 (x-1) dx + \int_2^3 (x-2) dx Evaluating each integral: 01xdx=[x22]01=12\int_0^1 x dx = \left[\frac{x^2}{2}\right]_0^1 = \frac{1}{2} 12(x1)dx=[x22x]12=12\int_1^2 (x-1) dx = \left[\frac{x^2}{2} - x\right]_1^2 = \frac{1}{2} 23(x2)dx=[x222x]23=12\int_2^3 (x-2) dx = \left[\frac{x^2}{2} - 2x\right]_2^3 = \frac{1}{2} Summing the results: 12+12+12=32\frac{1}{2} + \frac{1}{2} + \frac{1}{2} = \frac{3}{2} Alternatively, the integral represents the area under the graph of y={x}y=\{x\} from x=0x=0 to x=3x=3. This area consists of three triangles, each with base 1 and height 1, so the total area is 3×(12×1×1)=323 \times (\frac{1}{2} \times 1 \times 1) = \frac{3}{2}.