Question
Question: $\int_{0}^{2\pi} (\sin x+|\sin x|) dx$ is equal to...
∫02π(sinx+∣sinx∣)dx is equal to
A
0
B
2
C
4
D
None of these
Answer
4
Explanation
Solution
To evaluate the integral ∫02π(sinx+∣sinx∣)dx, we can split it into two parts:
- ∫02πsinxdx
- ∫02π∣sinx∣dx
The first integral is: ∫02πsinxdx=[−cosx]02π=−cos(2π)+cos(0)=−1+1=0
For the second integral, we consider the intervals where sinx is positive and negative. In [0,π], sinx≥0, so ∣sinx∣=sinx. In [π,2π], sinx≤0, so ∣sinx∣=−sinx.
Thus, ∫02π∣sinx∣dx=∫0πsinxdx+∫π2π(−sinx)dx
Now, we calculate these integrals: ∫0πsinxdx=[−cosx]0π=−cos(π)+cos(0)=−(−1)+1=2 ∫π2π(−sinx)dx=[cosx]π2π=cos(2π)−cos(π)=1−(−1)=2
So, ∫02π∣sinx∣dx=2+2=4
Finally, we combine the results: ∫02π(sinx+∣sinx∣)dx=0+4=4