Solveeit Logo

Question

Question: $\int_{0}^{2\pi} (\sin x+|\sin x|) dx$ is equal to...

02π(sinx+sinx)dx\int_{0}^{2\pi} (\sin x+|\sin x|) dx is equal to

A

0

B

2

C

4

D

None of these

Answer

4

Explanation

Solution

To evaluate the integral 02π(sinx+sinx)dx\int_{0}^{2\pi} (\sin x+|\sin x|) dx, we can split it into two parts:

  1. 02πsinxdx\int_{0}^{2\pi} \sin x \, dx
  2. 02πsinxdx\int_{0}^{2\pi} |\sin x| \, dx

The first integral is: 02πsinxdx=[cosx]02π=cos(2π)+cos(0)=1+1=0\int_{0}^{2\pi} \sin x \, dx = [-\cos x]_{0}^{2\pi} = -\cos(2\pi) + \cos(0) = -1 + 1 = 0

For the second integral, we consider the intervals where sinx\sin x is positive and negative. In [0,π][0, \pi], sinx0\sin x \ge 0, so sinx=sinx|\sin x| = \sin x. In [π,2π][\pi, 2\pi], sinx0\sin x \le 0, so sinx=sinx|\sin x| = -\sin x.

Thus, 02πsinxdx=0πsinxdx+π2π(sinx)dx\int_{0}^{2\pi} |\sin x| \, dx = \int_{0}^{\pi} \sin x \, dx + \int_{\pi}^{2\pi} (-\sin x) \, dx

Now, we calculate these integrals: 0πsinxdx=[cosx]0π=cos(π)+cos(0)=(1)+1=2\int_{0}^{\pi} \sin x \, dx = [-\cos x]_{0}^{\pi} = -\cos(\pi) + \cos(0) = -(-1) + 1 = 2 π2π(sinx)dx=[cosx]π2π=cos(2π)cos(π)=1(1)=2\int_{\pi}^{2\pi} (-\sin x) \, dx = [\cos x]_{\pi}^{2\pi} = \cos(2\pi) - \cos(\pi) = 1 - (-1) = 2

So, 02πsinxdx=2+2=4\int_{0}^{2\pi} |\sin x| \, dx = 2 + 2 = 4

Finally, we combine the results: 02π(sinx+sinx)dx=0+4=4\int_{0}^{2\pi} (\sin x+|\sin x|) dx = 0 + 4 = 4